;;; xr.el --- Convert string regexp to rx notation -*- lexical-binding: t -*- ;; Copyright (C) 2019-2020 Free Software Foundation, Inc. ;; Author: Mattias Engdegård ;; Version: 1.21 ;; Package-Requires: ((emacs "26.1")) ;; URL: https://github.com/mattiase/xr ;; Keywords: lisp, regexps ;; This program is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with this program. If not, see . ;;; Commentary: ;; This package translates regexps in string form to the rx notation. ;; It can also find mistakes and questionable constructs in regexps ;; and related expressions. See the README file for more information. ;;; News: ;; Version 1.21: ;; - Suppress false complaint about (? (+ X)) ;; Version 1.20: ;; - Fix duplication removal in character alternatives, like [aaa] ;; - All diagnostics are now described in the README file ;; - Improved anchor conflict checks ;; Version 1.19: ;; - Added filename-specific checks; new PURPOSE argument to `xr-lint' ;; - Warn about wrapped subsumption, like \(A*C[AB]*\)+ ;; - Improved scope and accuracy of all subsumption checks ;; - Warn about anchors in conflict with other expressions, like \(A$\)B ;; Version 1.18: ;; - Fix test broken in Emacs 26 ;; Version 1.17: ;; - Performance improvements ;; Version 1.16: ;; - Translate [^\n] into nonl ;; - Better character class subset/superset analysis ;; - More accurate repetition subsumption check ;; - Use text quoting for messages ;; Version 1.15: ;; - Warn about subsuming repetitions in sequence, like [AB]+A* ;; Version 1.14: ;; - Warn about repetition of grouped repetition ;; Version 1.13: ;; - More robust pretty-printing, especially for characters ;; - Generate (category CHAR) for unknown categories ;; Version 1.12: ;; - Warn about branch subsumption, like [AB]\|A ;; Version 1.11: ;; - Warn about repetition of empty-matching expressions ;; - Detect `-' not first or last in char alternatives or skip-sets ;; - Stronger ad-hoc [...] check in skip-sets ;; Version 1.10: ;; - Warn about [[:class:]] in skip-sets ;; - Warn about two-character ranges like [*-+] in regexps ;; Version 1.9: ;; - Don't complain about [z-a] and [^z-a] specifically ;; - Improved skip set checks ;; Version 1.8: ;; - Improved skip set checks ;; Version 1.7: ;; - Parse skip-sets, adding `xr-skip-set', `xr-skip-set-pp' and ;; `xr-skip-set-lint' ;; - Ad-hoc check for misplaced `]' in regexps ;; Version 1.6: ;; - Detect duplicated branches like A\|A ;; Version 1.5: ;; - Add dialect option to `xr' and `xr-pp' ;; - Negative empty sets, [^z-a], now become `anything' ;; Version 1.4: ;; - Detect overlap in character alternatives ;; Version 1.3: ;; - Improved xr-lint warnings ;; Version 1.2: ;; - `xr-lint' added ;;; Code: (require 'rx) (require 'cl-lib) (defun xr--report (warnings position message) "Add the report MESSAGE at POSITION to WARNINGS." (when warnings (push (cons (1- position) message) (car warnings)))) (defun xr--parse-char-alt (negated warnings) (let ((start-pos (point)) (intervals nil) (classes nil)) (cond ;; Initial ]-x range ((looking-at (rx "]-" (not (any "]")))) (let ((end (aref (match-string 0) 2))) (if (>= end ?\]) (push (vector ?\] end (point)) intervals) (xr--report warnings (point) (format-message "Reversed range `%s' matches nothing" (xr--escape-string (match-string 0) nil)))) (when (eq end ?^) (xr--report warnings (point) (format-message "Two-character range `%s'" (xr--escape-string (match-string 0) nil))))) (goto-char (match-end 0))) ;; Initial ] ((eq (following-char) ?\]) (push (vector ?\] ?\] (point)) intervals) (forward-char 1))) (while (not (eq (following-char) ?\])) (cond ;; character class ((looking-at (rx "[:" (group (* (not (any ":")))) ":]")) (let ((sym (intern (match-string 1)))) (unless (memq sym '(ascii alnum alpha blank cntrl digit graph lower multibyte nonascii print punct space unibyte upper word xdigit)) (error "No character class `%s'" (match-string 0))) (if (memq sym classes) (xr--report warnings (point) (format-message "Duplicated character class `[:%s:]'" sym)) (push sym classes)) (goto-char (match-end 0)))) ;; character range ((looking-at (rx (not (any "]")) "-" (not (any "]")))) (let ((start (char-after)) (end (char-after (+ (point) 2)))) (cond ((<= start end) (push (vector start end (point)) intervals)) ;; It's unlikely that anyone writes z-a by mistake; don't complain. ((and (eq start ?z) (eq end ?a))) (t (xr--report warnings (point) (format-message "Reversed range `%s' matches nothing" (xr--escape-string (match-string 0) nil))))) ;; Suppress warnings about ranges between adjacent digits, ;; like [0-1], as they are common and harmless. (when (and (= end (1+ start)) (not (<= ?0 start end ?9))) (xr--report warnings (point) (format-message "Two-character range `%s'" (xr--escape-string (match-string 0) nil)))) (goto-char (match-end 0)))) ((eobp) (error "Unterminated character alternative")) ;; plain character (including ^ or -) (t (let ((ch (following-char))) (when (and (eq ch ?\[) ;; Ad-hoc pattern attempting to catch mistakes ;; on the form [...[...]...] ;; where we are ^here (looking-at (rx "[" (zero-or-more (not (any "[]"))) "]" (zero-or-more (not (any "[]"))) (not (any "[\\")) "]")) ;; Only if the alternative didn't start with ] (not (and intervals (eq (aref (car (last intervals)) 0) ?\])))) (xr--report warnings (point) (format-message "Suspect `[' in char alternative"))) (when (and (looking-at (rx "-" (not (any "]")))) (> (point) start-pos)) (xr--report warnings (point) (format-message "Literal `-' not first or last in character alternative"))) (push (vector ch ch (point)) intervals)) (forward-char 1)))) (forward-char 1) ; eat the ] ;; Detect duplicates and overlapping intervals. (let* ((sorted (sort (nreverse intervals) (lambda (a b) (< (aref a 0) (aref b 0))))) (s sorted)) (while (cdr s) (let ((this (car s)) (next (cadr s))) (if (>= (aref this 1) (aref next 0)) ;; Overlap. (let ((message (cond ;; Duplicate character: drop it and warn. ((and (eq (aref this 0) (aref this 1)) (eq (aref next 0) (aref next 1))) (format-message "Duplicated `%c' inside character alternative" (aref this 0))) ;; Duplicate range: drop it and warn. ((and (eq (aref this 0) (aref next 0)) (eq (aref this 1) (aref next 1))) (format-message "Duplicated `%c-%c' inside character alternative" (aref this 0) (aref this 1))) ;; Character in range: drop it and warn. ((eq (aref this 0) (aref this 1)) (setcar s next) (format-message "Character `%c' included in range `%c-%c'" (aref this 0) (aref next 0) (aref next 1))) ;; Same but other way around. ((eq (aref next 0) (aref next 1)) (format-message "Character `%c' included in range `%c-%c'" (aref next 0) (aref this 0) (aref this 1))) ;; Overlapping ranges: merge and warn. (t (let ((this-end (aref this 1))) (aset this 1 (max (aref this 1) (aref next 1))) (format-message "Ranges `%c-%c' and `%c-%c' overlap" (aref this 0) this-end (aref next 0) (aref next 1))))))) (xr--report warnings (max (aref this 2) (aref next 2)) (xr--escape-string message nil)) (setcdr s (cddr s))) ;; No overlap. (setq s (cdr s))))) ;; Gather ranges and single characters separately. ;; We make no attempts at merging adjacent intervals/characters, ;; nor at splitting short intervals such as "a-b"; if the user ;; wrote it that way, there was probably a reason for it. (let ((ranges nil) (chars nil)) (dolist (interv sorted) (if (eq (aref interv 0) (aref interv 1)) (push (aref interv 0) chars) (push (string (aref interv 0) ?- (aref interv 1)) ranges))) ;; We return (any) for non-negated empty sets, such as [z-a]. ;; `unmatchable' would perhaps be better; both require Emacs 27.1 ;; or newer for use in rx. (cond ;; Negated empty set, like [^z-a]: anything. ((and negated (null chars) (null ranges) (null classes)) 'anything) ;; Non-negated single-char set, like [$]: make a string. ((and (= (length chars) 1) (not negated) (null ranges) (null classes)) (string (car chars))) ;; Single named class, like [[:space:]]: use the symbol. ((and (= (length classes) 1) (null chars) (null ranges)) (if negated (list 'not (car classes)) (car classes))) ;; [^\n]: nonl. ((and negated (equal chars '(?\n)) (null ranges) (null classes)) 'nonl) ;; Anything else: produce (any ...) (t ;; Put dash last of all single characters. (when (memq ?- chars) (setq chars (cons ?- (delq ?- chars)))) (let* ((set (cons 'any (nconc (and ranges (list (apply #'concat (nreverse ranges)))) (and chars (list (apply #'string (nreverse chars)))) (nreverse classes))))) (if negated (list 'not set) set)))))))) (defun xr--rev-join-seq (sequence) "Reverse SEQUENCE, flatten any (seq ...) inside, and concatenate adjacent strings. SEQUENCE is used destructively." (let ((result nil)) (while sequence (let ((elem (car sequence)) (rest (cdr sequence))) (cond ((and (consp elem) (eq (car elem) 'seq)) (setq sequence (nconc (nreverse (cdr elem)) rest))) ((and (stringp elem) (stringp (car result))) (setq result (cons (concat elem (car result)) (cdr result))) (setq sequence rest)) (t (setq result (cons elem result)) (setq sequence rest))))) result)) (defun xr--char-category (negated category-code) (let* ((sym (assq category-code '((?\s . space-for-indent) (?. . base) (?0 . consonant) (?1 . base-vowel) (?2 . upper-diacritical-mark) (?3 . lower-diacritical-mark) (?4 . tone-mark) (?5 . symbol) (?6 . digit) (?7 . vowel-modifying-diacritical-mark) (?8 . vowel-sign) (?9 . semivowel-lower) (?< . not-at-end-of-line) (?> . not-at-beginning-of-line) (?A . alpha-numeric-two-byte) (?C . chinese-two-byte) (?G . greek-two-byte) (?H . japanese-hiragana-two-byte) (?I . indian-two-byte) (?K . japanese-katakana-two-byte) (?L . strong-left-to-right) (?N . korean-hangul-two-byte) (?R . strong-right-to-left) (?Y . cyrillic-two-byte) (?^ . combining-diacritic) (?a . ascii) (?b . arabic) (?c . chinese) (?e . ethiopic) (?g . greek) (?h . korean) (?i . indian) (?j . japanese) (?k . japanese-katakana) (?l . latin) (?o . lao) (?q . tibetan) (?r . japanese-roman) (?t . thai) (?v . vietnamese) (?w . hebrew) (?y . cyrillic) (?| . can-break)))) (item (list 'category (if sym (cdr sym) category-code)))) (if negated (list 'not item) item))) (defun xr--char-syntax (negated syntax-code) (let ((sym (assq syntax-code '((?- . whitespace) (?\s . whitespace) (?. . punctuation) (?w . word) (?W . word) ; undocumented (?_ . symbol) (?\( . open-parenthesis) (?\) . close-parenthesis) (?' . expression-prefix) (?\" . string-quote) (?$ . paired-delimiter) (?\\ . escape) (?/ . character-quote) (?< . comment-start) (?> . comment-end) (?| . string-delimiter) (?! . comment-delimiter))))) (when (not sym) (error "Unknown syntax code `%s'" (xr--escape-string (char-to-string syntax-code) nil))) (let ((item (list 'syntax (cdr sym)))) (if negated (list 'not item) item)))) (defun xr--postfix (operator operand) ;; We use verbose names for the common *, + and ? operators for readability, ;; even though these names are affected by the rx-greedy-flag. ;; For the (less common) non-greedy operators we might want to ;; consider using minimal-match/maximal-match instead, but ;; this would complicate the implementation. (let* ((sym (cdr (assoc operator '(("*" . zero-or-more) ("+" . one-or-more) ("?" . opt) ("*?" . *?) ("+?" . +?) ("??" . ??))))) ;; Simplify when the operand is (seq ...) (body (if (and (listp operand) (eq (car operand) 'seq)) (cdr operand) (list operand)))) (cons sym body))) (defun xr--repeat (lower upper operand) "Apply a repetition of {LOWER,UPPER} to OPERAND. UPPER may be nil, meaning infinity." (when (and upper (> lower upper)) (error "Invalid repetition interval")) ;; rx does not accept (= 0 ...) or (>= 0 ...), so we use ;; (repeat 0 0 ...) and (zero-or-more ...), respectively. ;; Note that we cannot just delete the operand if LOWER=UPPER=0, ;; since doing so may upset the group numbering. (let* ((operator (cond ((null upper) (if (zerop lower) '(zero-or-more) (list '>= lower))) ((and (= lower upper) (> lower 0)) (list '= lower)) (t (list 'repeat lower upper)))) ;; Simplify when the operand is (seq ...). (body (if (and (listp operand) (eq (car operand) 'seq)) (cdr operand) (list operand)))) (append operator body))) (defconst xr--zero-width-assertions '(bol eol bos eos bow eow word-boundary not-word-boundary symbol-start symbol-end point)) (defun xr--matches-empty-p (rx) "Whether RX can match the empty string regardless of context." (pcase rx (`(,(or 'seq 'one-or-more '+? 'group) . ,body) (cl-every #'xr--matches-empty-p body)) (`(or . ,body) (cl-some #'xr--matches-empty-p body)) (`(group-n ,_ . ,body) (cl-every #'xr--matches-empty-p body)) (`(,(or 'opt 'zero-or-more ?? '*?) . ,_) t) (`(repeat ,from ,_ . ,body) (or (= from 0) (cl-every #'xr--matches-empty-p body))) (`(,(or '= '>=) ,_ . ,body) (cl-every #'xr--matches-empty-p body)) ("" t))) (defun xr--adjacent-subsumption (a b) "Check if A subsumes B, or vice versa, or not, assuming they are adjacent. Return `a-subsumes-b', `b-subsumes-a' or nil." ;; Check for subsuming repetitions in sequence: (Ra A) (Rb B) ;; where Ra and Rb are repetition operators, and A and B are operands. ;; We conclude that (Ra A) subsumes (Rb B), in the sense that the ;; sequence is equivalent to just (Ra A), if: ;; A matches a superset of B ;; and Ra can match infinitely many times ;; and Rb can match zero times ;; and Rb is non-greedy if Ra is non-greedy. ;; Example: [cd]+c? (let ((a-expr (and (consp a) (memq (car a) '(zero-or-more one-or-more opt *? +? ??)) (xr--make-seq (cdr a))))) (when a-expr (let ((b-expr (and (consp b) (memq (car b) '(zero-or-more one-or-more opt *? +? ??)) (xr--make-seq (cdr b))))) (when b-expr (let ((a-op (car a)) (b-op (car b))) ;; Test the same condition twice, but mirrored. (cond ((and (memq b-op '(zero-or-more opt *? ??)) (memq a-op '(zero-or-more one-or-more *? +?)) (not (and (memq a-op '(*? +?)) (memq b-op '(zero-or-more opt)))) (xr--superset-p a-expr b-expr)) 'a-subsumes-b) ((and (memq a-op '(zero-or-more opt *? ??)) (memq b-op '(zero-or-more one-or-more *? +?)) (not (and (memq b-op '(*? +?)) (memq a-op '(zero-or-more opt)))) (xr--superset-p b-expr a-expr)) 'b-subsumes-a)))))))) (defun xr--check-wrap-around-repetition (operand pos warnings) "Whether OPERAND has a wrap-around repetition subsumption case, like (* (* X) ... (* X))." (when (and (consp operand) (memq (car operand) '(seq group group-n))) (let* ((operands (if (eq (car operand) 'group-n) (cddr operand) (cdr operand)))) (when (cddr operands) (let* ((first (car operands)) (last (car (last operands))) (subsumption (xr--adjacent-subsumption last first))) (when subsumption (xr--report warnings pos (if (eq subsumption 'b-subsumes-a) "First item in repetition subsumes last item (wrapped)" "Last item in repetition subsumes first item (wrapped)")))))))) (defun xr--parse-seq (warnings purpose) (let ((sequence nil)) ; reversed (while (not (looking-at (rx (or "\\|" "\\)" eos)))) (let ((item-start (point))) (cond ;; ^ - only special at beginning of sequence ((eq (following-char) ?^) (forward-char 1) (if (null sequence) (progn (when (eq purpose 'file) (xr--report warnings item-start "Use \\` instead of ^ in file-matching regexp")) (push 'bol sequence)) (xr--report warnings item-start (format-message "Unescaped literal `^'")) (push "^" sequence))) ;; $ - only special at end of sequence ((eq (following-char) ?$) (forward-char 1) (if (looking-at (rx (or "\\|" "\\)" eos))) (progn (when (eq purpose 'file) (xr--report warnings item-start "Use \\' instead of $ in file-matching regexp")) (push 'eol sequence)) (xr--report warnings item-start (format-message "Unescaped literal `$'")) (push "$" sequence))) ;; * ? + (and non-greedy variants) ;; - not special at beginning of sequence or after ^ ((looking-at (rx (group (any "*?+")) (opt "?"))) (if (and sequence (not (and (eq (car sequence) 'bol) (eq (preceding-char) ?^)))) (let ((operator (match-string 0)) (operand (car sequence))) (when warnings ;; Check both (OP (OP X)) and (OP (group (OP X))). (let ((inner-op (and (consp operand) (if (eq (car operand) 'group) (and (null (cddr operand)) (let ((inner (cadr operand))) (and (consp inner) (car inner)))) (car operand))))) (cond ((and ;; (OP1 (OP2 X)), for any repetitions OP1, OP2 (memq inner-op '(opt zero-or-more one-or-more *? +? ??)) ;; Except (? (+ X)) which may be legitimate. (not (and (equal operator "?") (consp operand) (memq inner-op '(one-or-more +?))))) (let ((outer-opt (member operator '("?" "??"))) (inner-opt (memq inner-op '(opt ??)))) (xr--report warnings (match-beginning 0) (if outer-opt (if inner-opt "Optional option" "Optional repetition") (if inner-opt "Repetition of option" "Repetition of repetition"))))) ((memq operand xr--zero-width-assertions) (xr--report warnings (match-beginning 0) (if (member operator '("?" "??")) "Optional zero-width assertion" "Repetition of zero-width assertion"))) ((and (xr--matches-empty-p operand) ;; Rejecting repetition of the empty string ;; suppresses some false positives. (not (equal operand ""))) (xr--report warnings (match-beginning 0) (concat (if (member operator '("?" "??")) "Optional expression" "Repetition of expression") " matching an empty string"))))) ;; (* (* X) ... (* X)) etc: wrap-around subsumption (when (member operator '("*" "+" "*?" "+?")) (xr--check-wrap-around-repetition operand (match-beginning 0) warnings))) (goto-char (match-end 0)) (setq sequence (cons (xr--postfix operator operand) (cdr sequence)))) (let ((literal (match-string 1))) (goto-char (match-end 1)) (xr--report warnings (match-beginning 0) (format-message "Unescaped literal `%s'" literal)) (push literal sequence)))) ;; \{..\} - not special at beginning of sequence or after ^ ((and (looking-at (rx "\\{")) sequence (not (and (eq (car sequence) 'bol) (eq (preceding-char) ?^)))) (forward-char 2) (let ((operand (car sequence))) (when warnings (cond ((and (consp operand) (or ;; (** N M (* X)), for any repetition * (memq (car operand) '(opt zero-or-more one-or-more +? *? ??)) ;; (** N M (group (* X))), for any repetition * (and (eq (car operand) 'group) (null (cddr operand)) (let ((inner (cadr operand))) (and (consp inner) (memq (car inner) '(opt zero-or-more one-or-more +? *? ??))))))) (let ((inner-opt (or (memq (car operand) '(opt ??)) (and (eq (car operand) 'group) (memq (caadr operand) '(opt ??)))))) (xr--report warnings (match-beginning 0) (if inner-opt "Repetition of option" "Repetition of repetition")))) ((memq operand xr--zero-width-assertions) (xr--report warnings (match-beginning 0) "Repetition of zero-width assertion")) ((and (xr--matches-empty-p operand) ;; Rejecting repetition of the empty string ;; suppresses some false positives. (not (equal operand ""))) (xr--report warnings (match-beginning 0) "Repetition of expression matching an empty string")))) (if (looking-at (rx (opt (group (one-or-more digit))) (opt (group ",") (opt (group (one-or-more digit)))) "\\}")) (let ((lower (if (match-string 1) (string-to-number (match-string 1)) 0)) (comma (match-string 2)) (upper (and (match-string 3) (string-to-number (match-string 3))))) (unless (or (match-beginning 1) (match-string 3)) (xr--report warnings (- (match-beginning 0) 2) (if comma "Uncounted repetition" "Implicit zero repetition"))) (when (and warnings (if comma (or (not upper) (>= upper 2)) (>= lower 2))) (xr--check-wrap-around-repetition operand (match-beginning 0) warnings)) (goto-char (match-end 0)) (setq sequence (cons (xr--repeat lower (if comma upper lower) operand) (cdr sequence)))) (error "Invalid \\{\\} syntax")))) ;; nonspecial character ((looking-at (rx (not (any "\\.[")))) (forward-char 1) (push (match-string 0) sequence)) ;; character alternative ((looking-at (rx "[" (opt (group "^")))) (goto-char (match-end 0)) (let ((negated (match-beginning 1))) (push (xr--parse-char-alt negated warnings) sequence))) ;; group ((looking-at (rx "\\(" (opt (group "?") (opt (opt (group (any "1-9") (zero-or-more digit))) (group ":"))))) (let ((question (match-beginning 1)) (number (match-string 2)) (colon (match-beginning 3))) (when (and question (not colon)) (error "Invalid \\(? syntax")) (goto-char (match-end 0)) (let* ((group (xr--parse-alt warnings purpose)) ;; simplify - group has an implicit seq (operand (if (and (listp group) (eq (car group) 'seq)) (cdr group) (list group)))) (when (not (looking-at (rx "\\)"))) (error "Missing \\)")) (forward-char 2) (let ((item (cond (number ; numbered group (append (list 'group-n (string-to-number number)) operand)) (question ; shy group group) (t ; plain group (cons 'group operand))))) (push item sequence))))) ;; back-reference ((looking-at (rx "\\" (group (any "1-9")))) (forward-char 2) (push (list 'backref (string-to-number (match-string 1))) sequence)) ;; not-newline ((eq (following-char) ?.) (forward-char) ;; Assume that .* etc is intended. (when (and (eq purpose 'file) (not (looking-at (rx (any "?*+"))))) (xr--report warnings (1- (point)) (format-message "Possibly unescaped `.' in file-matching regexp"))) (push 'nonl sequence)) ;; various simple substitutions ((looking-at (rx (or "\\w" "\\W" "\\`" "\\'" "\\=" "\\b" "\\B" "\\<" "\\>"))) (goto-char (match-end 0)) (let ((sym (cdr (assoc (match-string 0) '(("\\w" . wordchar) ("\\W" . not-wordchar) ("\\`" . bos) ("\\'" . eos) ("\\=" . point) ("\\b" . word-boundary) ("\\B" . not-word-boundary) ("\\<" . bow) ("\\>" . eow)))))) (push sym sequence))) ;; symbol-start, symbol-end ((looking-at (rx "\\_" (opt (group (any "<>"))))) (let ((arg (match-string 1))) (unless arg (error "Invalid \\_ sequence")) (forward-char 3) (push (if (string-equal arg "<") 'symbol-start 'symbol-end) sequence))) ;; character syntax ((looking-at (rx "\\" (group (any "sS")) (opt (group anything)))) (let ((negated (string-equal (match-string 1) "S")) (syntax-code (match-string 2))) (unless syntax-code (error "Incomplete \\%s sequence" (match-string 1))) (goto-char (match-end 0)) (push (xr--char-syntax negated (string-to-char syntax-code)) sequence))) ;; character categories ((looking-at (rx "\\" (group (any "cC")) (opt (group anything)))) (let ((negated (string-equal (match-string 1) "C")) (category-code (match-string 2))) (unless category-code (error "Incomplete \\%s sequence" (match-string 1))) (goto-char (match-end 0)) (push (xr--char-category negated (string-to-char category-code)) sequence))) ;; Escaped character. Only \*+?.^$[ really need escaping, but we ;; accept any not otherwise handled character after the backslash ;; since such sequences are found in the wild. ((looking-at (rx "\\" (group (or (any "\\*+?.^$[]") (group (not (any "\\*+?.^$[]"))))))) (forward-char 2) (push (match-string 1) sequence) (when (match-beginning 2) ;; Note that we do not warn about \\], since the symmetry with \\[ ;; makes it unlikely to be a serious error. (xr--report warnings (match-beginning 0) (format-message "Escaped non-special character `%s'" (xr--escape-string (match-string 2) nil))))) (t (error "Backslash at end of regexp"))) (when (and warnings (cdr sequence) (not (looking-at (rx (or (any "?*+") "\\{"))))) (let* ((item (car sequence)) (prev-item (cadr sequence)) (subsumption (xr--adjacent-subsumption prev-item item))) (when subsumption (xr--report warnings item-start (if (eq subsumption 'a-subsumes-b) "Repetition subsumed by preceding repetition" "Repetition subsumes preceding repetition"))) ;; Check for anchors conflicting with previous/next character. ;; To avoid false positives, we require that at least one ;; of the items is present in all paths. (let ((prev-eol (xr--ends-with-sym 'eol prev-item))) (when prev-eol (let ((this-nonl (xr--starts-with-nonl item))) (when (and this-nonl (or (eq prev-eol 'always) (eq this-nonl 'always))) (xr--report warnings item-start "End-of-line anchor followed by non-newline"))))) (let ((this-bol (xr--starts-with-sym 'bol item))) (when this-bol (let ((prev-nonl (xr--ends-with-nonl prev-item))) (when (and prev-nonl (or (eq prev-nonl 'always) (eq this-bol 'always))) (xr--report warnings item-start "Non-newline followed by line-start anchor"))))) (let ((prev-eos (xr--ends-with-sym 'eos prev-item))) (when prev-eos (let ((this-nonempty (xr--matches-nonempty item))) (when (and this-nonempty (or (eq prev-eos 'always) (eq this-nonempty 'always))) (xr--report warnings item-start "End-of-text anchor followed by non-empty pattern"))))) ;; FIXME: We don't complain about non-empty followed by ;; bos because it may be the start of unmatchable. ;; We should really do these checks in a later pass, ;; and maintain location information. )))) (let ((item-seq (xr--rev-join-seq sequence))) (cond ((null item-seq) "") ((null (cdr item-seq)) (car item-seq)) (t (cons 'seq item-seq)))))) (defun xr--tristate-some (f list) "Whether F is true for some element in LIST. Return `always' if F returns `always' for at least one element, nil if F returns nil for all elements, `sometimes' otherwise." (let ((result (mapcar f list))) (cond ((memq 'always result) 'always) ((memq 'sometimes result) 'sometimes)))) (defun xr--tristate-all (f list) "Whether F is true for all elements in LIST. Return `always' if F returns `always' for all elements, nil if F returns nil for all elements, `sometimes' otherwise." (let ((results (mapcar f list))) (cond ((memq nil results) (and (delq nil results) 'sometimes)) ((memq 'sometimes results) 'sometimes) (t 'always)))) (defun xr--matches-nonempty (rx) "Whether RX matches non-empty strings. Return `always', `sometimes' or nil. `always' if RX only matches non-empty strings, `sometimes' if RX may match a non-empty string, nil if RX only matches the empty string." (pcase rx ((pred stringp) (and (> (length rx) 0) 'always)) (`(,(or 'seq 'one-or-more '+? 'group) . ,body) (xr--tristate-some #'xr--matches-nonempty body)) (`(,(or 'opt 'zero-or-more ?? '*?) . ,body) (and (xr--tristate-some #'xr--matches-nonempty body) 'sometimes)) (`(or . ,body) (xr--tristate-all #'xr--matches-nonempty body)) (`(group-n ,_ . ,body) (xr--tristate-some #'xr--matches-nonempty body)) (`(repeat ,from ,_ . ,body) (if (= from 0) (and (cl-some #'xr--matches-nonempty body) 'sometimes) (xr--tristate-some #'xr--matches-nonempty body))) (`(,(or '= '>=) ,n . ,body) (if (= n 0) (and (cl-some #'xr--matches-nonempty body) 'sometimes) (xr--tristate-some #'xr--matches-nonempty body))) (`(,(or 'any 'not 'intersection 'syntax 'category) . ,_) 'always) ((or 'ascii 'alnum 'alpha 'blank 'cntrl 'digit 'graph 'lower 'multibyte 'nonascii 'print 'punct 'space 'unibyte 'upper 'word 'xdigit 'nonl 'anything) 'always))) (defun xr--starts-with-sym (symbol item) "Whether ITEM starts with SYMBOL. Return `always', `sometimes' or nil." (cond ((eq item symbol) 'always) ((atom item) nil) ((memq (car item) '(seq one-or-more +? group)) (xr--starts-with-sym symbol (cadr item))) ((memq (car item) '(seq opt zero-or-more ?? *?)) (and (xr--starts-with-sym symbol (cadr item)) 'sometimes)) ((eq (car item) 'group-n) (xr--starts-with-sym symbol (caddr item))) ((eq (car item) 'or) (xr--tristate-all (lambda (x) (xr--starts-with-sym symbol x)) (cdr item))))) (defun xr--ends-with-sym (symbol item) "Whether ITEM ends with SYMBOL. Return `always', `sometimes' or nil." (cond ((eq item symbol) 'always) ((atom item) nil) ((memq (car item) '(seq one-or-more +? group group-n)) (xr--ends-with-sym symbol (car (last item)))) ((memq (car item) '(seq opt zero-or-more ?? *?)) (and (xr--ends-with-sym symbol (car (last item))) 'sometimes)) ((eq (car item) 'or) (xr--tristate-all (lambda (x) (xr--ends-with-sym symbol x)) (cdr item))))) (defun xr--starts-with-nonl (item) "Whether ITEM starts with a non-newline. Return `always', `maybe' or nil." (pcase item ((pred stringp) (and (> (length item) 0) (not (eq (aref item 0) ?\n)) 'always)) (`(,(or 'seq 'one-or-more '+? 'group) ,first . ,_) (xr--starts-with-nonl first)) (`(,(or 'opt 'zero-or-more ?? '*?) ,first . ,_) (and (xr--starts-with-nonl first) 'sometimes)) (`(or . ,items) (xr--tristate-all #'xr--starts-with-nonl items)) (`(group-n ,_ ,first . ,_) (xr--starts-with-nonl first)) (`(,(or '= '>=) ,n ,first . ,_) (and (> n 0) (xr--starts-with-nonl first))) (`(repeat ,n ,_ ,first . ,_) (and (> n 0) (xr--starts-with-nonl first))) (`(,(or 'any 'not 'intersection) . ,_) (and (xr--superset-p 'nonl item) 'always)) ((or 'alnum 'alpha 'blank 'digit 'graph 'lower 'multibyte 'nonascii 'print 'punct 'upper 'word 'xdigit 'nonl) 'always))) (defun xr--ends-with-nonl (item) "Whether ITEM ends with a non-newline. Return `always', `maybe' or nil." (pcase item ((pred stringp) (and (> (length item) 0) (not (eq (aref item (1- (length item))) ?\n)) 'always)) (`(,(or 'seq 'one-or-more '+? 'group 'group-n) . ,items) (xr--ends-with-nonl (car (last items)))) (`(,(or 'opt 'zero-or-more ?? '*?) . ,items) (and (xr--ends-with-nonl (car (last items))) 'sometimes)) (`(or . ,items) (xr--tristate-all #'xr--starts-with-nonl items)) (`(,(or '= '>=) ,n . ,items) (and (> n 0) (xr--ends-with-nonl (car (last items))))) (`(repeat ,n ,_ . ,items) (and (> n 0) (xr--ends-with-nonl (car (last items))))) (`(,(or 'any 'not 'intersection) . ,_) (and (xr--superset-p 'nonl item) 'always)) ((or 'alnum 'alpha 'blank 'digit 'graph 'lower 'multibyte 'nonascii 'print 'punct 'upper 'word 'xdigit 'nonl) 'always))) (defun xr--range-string-to-items (str) "Convert a string of ranges to a list of pairs of their endpoints." (let ((len (length str)) (ranges nil) (i 0)) (while (< i len) (push (cons (aref str i) (aref str (+ i 2))) ranges) (setq i (+ i 3))) ranges)) (defun xr--any-arg-to-items (arg) "Convert an `any' argument to a list of characters, ranges (as pairs), and classes (symbols)." ;; We know (since we built it) that x is either a symbol, string or char, ;; and that the string does not mix ranges and chars. (cond ((symbolp arg) ;; unibyte and multibyte are aliases of ascii and nonascii in ;; practice; simplify. (list (cond ((eq arg 'unibyte) 'ascii) ((eq arg 'multibyte) 'nonascii) (t arg)))) ((characterp arg) (list arg)) ((and (>= (length arg) 3) (eq (aref arg 1) ?-)) (xr--range-string-to-items arg)) (t (string-to-list arg)))) ;; Character class relation matrix ;; Legend: = same ;; ⊂ row subset of column ;; ⊃ row superset of column ;; x overlapping ;; ∅ disjoint ;; ? not certain but very likely ;; * assuming `case-fold-search' is nil ;; ;; alp aln dig xdi cnt asc non bla gra pri pun upp low spa wor ;; alpha = ⊂ ∅ x ∅ x x ∅ ⊂ ⊂ ∅? ⊃? ⊃? ∅? ⊂? ;; alnum ⊃ = ⊃ ⊃ ∅ x x ∅ ⊂ ⊂ ∅? ⊃? ⊃? ∅? ⊂? ;; digit ∅ ⊂ = ⊂ ∅ ⊂ ∅ ∅ ⊂ ⊂ ∅ ∅? ∅? ∅? ⊂? ;; xdigit x ⊂ ⊃ = ∅ ⊂ ∅ ∅ ⊂ ⊂ ∅ x? x? ∅? ⊂? ;; cntrl ∅ ∅ ∅ ∅ = ⊂ ∅ x ∅ ∅ ∅ ∅? ∅? x? ∅? ;; ascii x x ⊃ ⊃ ⊃ = ∅ x x x x x? x? x? x? ;; nonascii x x ∅ ∅ ∅ ∅ = x x x x? x? x? x? x? ;; blank ∅ ∅ ∅ ∅ x x x = ∅ x x? ∅? ∅? x? ∅? ;; graph ⊃ ⊃ ⊃ ⊃ ∅ x x ∅ = ⊂ ⊃? ⊃? ⊃? ∅? ⊃? ;; print ⊃ ⊃ ⊃ ⊃ ∅ x x x ⊃ = ⊃? ⊃? ⊃? x? ⊃? ;; punct ∅? ∅? ∅ ∅ ∅ x x? x? ⊂? ⊂? = ∅? ∅? ∅? x? ;; upper ⊂? ⊂? ∅? x? ∅? x? x? ∅? ⊂? ⊂? ∅? = ∅* ∅? ⊂? ;; lower ⊂? ⊂? ∅? x? ∅? x? x? ∅? ⊂? ⊂? ∅? ∅* = ∅? ⊂? ;; space ∅? ∅? ∅? ∅? x? x? x? x? ∅? x? ∅? ∅? ∅? = ∅ ;; word ⊃? ⊃? ⊃? ⊃? ∅? x? x? ∅? ⊂? ⊂? x? ⊃? ⊃? ∅ = (defun xr--any-item-superset-p (a b) "Whether A is a superset of B, both being `any' items: a character, a range (pair of chars), or a class (symbol)." (cond ((symbolp a) (cond ((symbolp b) (or (eq a b) (memq b (cdr (assq a ;; Class superset matrix: first class in each row is ;; a superset of all the rest in that row. ;; It is slightly approximative, since upper, lower ;; and (partially) punct can be modified through case ;; and syntax tables. '((alpha upper lower) (alnum alpha digit xdigit upper lower) (xdigit digit) (ascii digit xdigit cntrl) (graph alpha alnum digit xdigit punct upper lower word) (print alpha alnum digit xdigit graph punct upper lower word) (word alpha alnum digit xdigit upper lower))))))) ((characterp b) (cond ;; Some reasonable subsets of `space' and `word'. ((eq a 'space) (memq b '(?\s ?\t ?\f))) ((eq a 'word) (string-match-p (rx (any "0-9A-Za-z")) (char-to-string b))) ;; Test for invariant classes only. `punct' is invariant for ASCII. ;; `upper' and `lower' are not really invariant but mostly. ((or (memq a '(digit xdigit cntrl ascii nonascii alpha alnum blank graph print upper lower)) (and (eq a 'punct) (<= b 127))) (string-match-p (format "[[:%s:]]" a) (char-to-string b))))) (t ; b is a range. ;; For simplicity, only check ASCII ranges. (and (<= (cdr b) 127) (cl-some (lambda (a-range) (and (<= (car a-range) (car b)) (<= (cdr b) (cdr a-range)))) (cdr (assq a '((alpha (?A . ?Z) (?a . ?z)) (alnum (?0 . ?9) (?A . ?Z) (?a . ?z)) (digit (?0 . ?9)) (xdigit (?0 . ?9) (?A . ?F) (?a . ?f)) (cntrl (0 . 31)) (ascii (0 . 127)) (graph (33 . 126)) (print (32 . 126)) (punct (33 . 47) (58 . 64) (91 . 96) (123 . 126)) ;; Not-so-wild assumptions. (upper (?A . ?Z)) (lower (?a . ?z)) (word (?0 . ?9) (?A . ?Z) (?a . ?z)) (space (?\s . ?\s) (?\t . ?\t) (?\f . ?\f)))))))))) ((consp a) (cond ((characterp b) (<= (car a) b (cdr a))) ((consp b) (<= (car a) (car b) (cdr b) (cdr a))) (t ; b is a class. ;; Only consider classes with simple definitions. (let ((b-hull (cdr (assq b '((digit . (?0 . ?9)) (xdigit . (?0 . ?f)) (cntrl . (0 . 31)) (ascii . (0 . 127)) (nonascii . (#x80 . #x10ffff))))))) (and b-hull (<= (car a) (car b-hull)) (<= (cdr b-hull) (cdr a))))))) (t ; a is a character. (and (characterp b) (eq a b))))) (defun xr--any-item-may-intersect-p (a b) "Whether A intersects B, both being `any' items: a character, a range (pair of chars), or a class (symbol). If in doubt, return t." (cond ((symbolp a) (cond ((symbolp b) (or (eq a b) (memq b (cdr (assq a ;; Class intersection matrix: first class in each row ;; intersects all the rest in that row. ;; Again slightly approximate, since upper, lower, ;; space, word and (partially) punct can be modified ;; through syntax and case tables. '((alpha alnum xdigit ascii nonascii graph print upper lower word) (alnum alpha digit xdigit ascii nonascii graph print upper lower word) (digit alnum xdigit ascii graph print word) (xdigit alpha alnum digit ascii graph print upper lower word) (cntrl ascii blank space) (ascii alpha alnum digit xdigit cntrl ascii blank graph print punct upper lower space word) (nonascii alpha alnum blank graph print punct upper lower space word) (blank cntrl ascii nonascii print punct space) (graph alpha alnum digit xdigit ascii nonascii print punct upper lower word) (print alpha alnum digit xdigit ascii nonascii blank graph punct upper lower space word) (punct ascii nonascii blank graph print upper lower word) (upper alpha alnum xdigit ascii nonascii graph print word) (lower alpha alnum xdigit ascii nonascii graph print word) (space cntrl ascii nonascii blank print) (word alpha alnum digit xdigit ascii nonascii graph print punct upper lower))))))) ((characterp b) (cond ;; Some reasonably conservative subsets of `space' and `word'. ((eq a 'space) (not (string-match-p (rx (any (33 . 126))) (char-to-string b)))) ((eq a 'word) (not (memq b '(?\s ?\t ?\f ?\r)))) (t ;; Only some classes are invariant. `punct' is invariant for ASCII. ;; `upper' and `lower' are not really invariant but mostly. (or (and (eq a 'punct) (> b 127)) ;; This may be a tad slow. (string-match-p (format "[[:%s:]]" a) (char-to-string b)))))) (t ; b is a range. ;; For simplicity, only check ASCII ranges. (cond ((and (> (cdr b) 127) (not (memq a '(cntrl ascii digit xdigit))))) ((eq a 'space) (not (cl-some (lambda (a-range) (and (<= (car a-range) (cdr b)) (<= (car b) (cdr a-range)))) '((?0 . ?9) (?A . ?Z) (?a . ?z))))) ((eq a 'word)) (t (cl-some (lambda (a-range) (and (<= (car a-range) (cdr b)) (<= (car b) (cdr a-range)))) (cdr (assq a '((alpha (?A . ?Z) (?a . ?z)) (alnum (?0 . ?9) (?A . ?Z) (?a . ?z)) (digit (?0 . ?9)) (xdigit (?0 . ?9) (?A . ?F) (?a . ?f)) (cntrl (0 . 31)) (ascii (0 . 127)) (graph (33 . 126)) (print (32 . 126)) (punct (33 . 47) (58 . 64) (91 . 96) (123 . 126)) ;; Not-so-wild assumptions. (upper (?A . ?Z)) (lower (?a . ?z))))))))))) ((consp a) (cond ((characterp b) (<= (car a) b (cdr a))) ((consp b) (and (<= (car a) (cdr b)) (<= (car b) (cdr a)))) (t ; b is a class (xr--any-item-may-intersect-p b a)))) ;; Now a must be a character. ((characterp b) (eq a b)) (t (xr--any-item-may-intersect-p b a)))) (defun xr--char-superset-of-char-set-p (a-sets negated b-sets) "Whether A-SETS, possibly NEGATED, is a superset of B-SETS. A-SETS and B-SETS are arguments to `any'." (let ((a-items (mapcan #'xr--any-arg-to-items a-sets)) (b-items (mapcan #'xr--any-arg-to-items b-sets))) (cl-every (lambda (b-item) (if negated (not (cl-some (lambda (a-item) (xr--any-item-may-intersect-p b-item a-item)) a-items)) (cl-some (lambda (a-item) (xr--any-item-superset-p a-item b-item)) a-items))) b-items))) (defun xr--char-superset-of-rx-p (sets negated rx) "Whether SETS, possibly NEGATED, is a superset of RX." (pcase rx (`(any . ,b-sets) (xr--char-superset-of-char-set-p sets negated b-sets)) (`(not (any . ,b-sets)) (and negated (xr--char-superset-of-char-set-p b-sets nil sets))) ((or 'ascii 'alnum 'alpha 'blank 'cntrl 'digit 'graph 'lower 'multibyte 'nonascii 'print 'punct 'space 'unibyte 'upper 'word 'xdigit) (xr--char-superset-of-char-set-p sets negated (list rx))) (`(not ,(and sym (or 'ascii 'alnum 'alpha 'blank 'cntrl 'digit 'graph 'lower 'multibyte 'nonascii 'print 'punct 'space 'unibyte 'upper 'word 'xdigit))) (and negated (xr--char-superset-of-char-set-p (list sym) nil sets))) ((pred characterp) (xr--char-superset-of-char-set-p sets negated (list rx))))) (defun xr--single-non-newline-char-p (rx) "Whether RX only matches single characters none of which is newline." (pcase rx ((or 'nonl 'wordchar) t) (`(category ,_) t) (`(syntax ,s) (not (eq s ?>))) ; comment-end often matches newline (_ (xr--char-superset-of-rx-p '("\n") t rx)))) (defun xr--single-char-p (rx) "Whether RX only matches single characters." (or (memq rx '(nonl anything ascii alnum alpha blank cntrl digit graph lower multibyte nonascii print punct space unibyte upper word xdigit wordchar not-wordchar)) (characterp rx) (and (consp rx) (or (memq (car rx) '(any category syntax)) (and (eq (car rx) 'not) (xr--single-char-p (cadr rx))))))) (defun xr--syntax-superset-of-rx-p (syntax negated rx) "Whether SYNTAX, possibly NEGATED, is a superset of RX." (cond ((eq syntax 'whitespace) (xr--char-superset-of-rx-p '(space) negated rx)) ((eq syntax 'word) (xr--char-superset-of-rx-p '(word) negated rx)) (t ;; Syntax tables vary, but we make a fairly conservative guess. (let* ((always-set ;; Characters we think always will be in the syntax set. '((open-parenthesis "([") (close-parenthesis "])"))) (never-set ;; Characters we think never will be in the syntax set. '((punctuation "A-Za-z0-9") ; NOT the same as [:punct:]! (open-parenthesis "\000-\037A-Za-z0-9" " \177") (close-parenthesis "\000-\037A-Za-z0-9" " \177"))) (set (assq syntax (if negated never-set always-set)))) (and set (xr--char-superset-of-rx-p (cdr set) nil rx)))))) (defun xr--expand-strings (rx) "Expand strings to characters or seqs of characters. `seq' forms are expanded non-recursively." (cond ((consp rx) (if (eq (car rx) 'seq) (cons 'seq (mapcan (lambda (x) (if (stringp x) (string-to-list x) (list x))) (cdr rx))) rx)) ((stringp rx) (if (= (length rx) 1) (string-to-char rx) (cons 'seq (string-to-list rx)))) (t rx))) (defun xr--superset-seq-p (a b) "Whether A matches all that B matches, both lists of expressions." (while (and a b (xr--superset-p (car a) (car b))) (setq a (cdr a)) (setq b (cdr b))) (and (not b) (or (not a) (xr--matches-empty-p (cons 'seq a))))) (defun xr--make-seq (body) (if (> (length body) 1) (cons 'seq body) (car body))) (defun xr--superset-p (a b) "Whether A matches all that B matches." (setq a (xr--expand-strings a)) (setq b (xr--expand-strings b)) (pcase b (`(or . ,b-body) (cl-every (lambda (b-expr) (xr--superset-p a b-expr)) b-body)) (_ (pcase a (`(any . ,sets) (xr--char-superset-of-rx-p sets nil b)) (`(not (any . ,sets)) (xr--char-superset-of-rx-p sets t b)) ((or 'ascii 'alnum 'alpha 'blank 'cntrl 'digit 'graph 'lower 'multibyte 'nonascii 'print 'punct 'space 'unibyte 'upper 'word 'xdigit) (xr--char-superset-of-rx-p (list a) nil b)) (`(not ,(and sym (or 'ascii 'alnum 'alpha 'blank 'cntrl 'digit 'graph 'lower 'multibyte 'nonascii 'print 'punct 'space 'unibyte 'upper 'word 'xdigit))) (xr--char-superset-of-rx-p (list sym) t b)) ('nonl (xr--single-non-newline-char-p b)) ('anything (xr--single-char-p b)) (`(seq . ,a-body) (pcase b (`(seq . ,b-body) (xr--superset-seq-p a-body b-body)) (_ (xr--superset-seq-p a-body (list b))))) (`(or . ,a-body) (cl-some (lambda (a-expr) (xr--superset-p a-expr b)) a-body)) (`(zero-or-more . ,a-body) (pcase b (`(,(or 'opt 'zero-or-more 'one-or-more) . ,b-body) (xr--superset-p (xr--make-seq a-body) (xr--make-seq b-body))) (_ (xr--superset-p (xr--make-seq a-body) b)))) (`(one-or-more . ,a-body) (pcase b (`(one-or-more . ,b-body) (xr--superset-p (xr--make-seq a-body) (xr--make-seq b-body))) (_ (xr--superset-p (xr--make-seq a-body) b)))) (`(opt . ,a-body) (pcase b (`(opt . ,b-body) (xr--superset-p (xr--make-seq a-body) (xr--make-seq b-body))) (_ (xr--superset-p (xr--make-seq a-body) b)))) (`(repeat ,lo ,_ . ,a-body) (if (<= lo 1) (xr--superset-p (xr--make-seq a-body) b) (equal a b))) ;; We do not expand through groups on the subset (b) side to ;; avoid false positives; "\\(a\\)\\|." should be without warning. (`(group . ,body) (xr--superset-p (xr--make-seq body) b)) (`(group-n ,_ . ,body) (xr--superset-p (xr--make-seq body) b)) (`(syntax ,syn) (or (equal a b) (xr--syntax-superset-of-rx-p syn nil b))) (`(not (syntax ,syn)) (or (equal a b) (xr--syntax-superset-of-rx-p syn t b))) ('wordchar (or (equal a b) (xr--syntax-superset-of-rx-p 'word nil b))) ('not-wordchar (or (equal a b) (xr--syntax-superset-of-rx-p 'word t b))) ((or `(category ,_) `(not (category ,_))) (or (equal a b) (and (characterp b) (string-match-p (rx-to-string a) (char-to-string b))))) (_ (equal a b)))))) (defun xr--parse-alt (warnings purpose) (let ((alternatives nil)) ; reversed (push (xr--parse-seq warnings purpose) alternatives) (while (not (looking-at (rx (or "\\)" eos)))) (forward-char 2) ; skip \| (let ((pos (point)) (seq (xr--parse-seq warnings purpose))) (when warnings (cond ((member seq alternatives) (xr--report warnings pos "Duplicated alternative branch")) ((cl-some (lambda (branch) (xr--superset-p seq branch)) alternatives) (xr--report warnings pos "Branch matches superset of a previous branch")) ((cl-some (lambda (branch) (xr--superset-p branch seq)) alternatives) (xr--report warnings pos "Branch matches subset of a previous branch")))) (push seq alternatives))) (if (cdr alternatives) ;; Simplify (or nonl "\n") to anything (if (member alternatives '((nonl "\n") ("\n" nonl))) 'anything (cons 'or (nreverse alternatives))) (car alternatives)))) (defun xr--parse (re-string warnings purpose) (with-temp-buffer (set-buffer-multibyte t) (insert re-string) (goto-char (point-min)) (let* ((case-fold-search nil) (rx (xr--parse-alt warnings purpose))) (when (looking-at (rx "\\)")) (error "Unbalanced \\)")) rx))) ;; Grammar for skip-set strings: ;; ;; skip-set ::= `^'? item* dangling? ;; item ::= range | single ;; range ::= single `-' endpoint ;; single ::= {any char but `\'} ;; | `\' {any char} ;; endpoint ::= single | `\' ;; dangling ::= `\' ;; ;; Ambiguities in the above are resolved greedily left-to-right. (defun xr--parse-skip-set-buffer (warnings) ;; An ad-hoc check, but one that catches lots of mistakes. (when (and (looking-at (rx "[" (one-or-more anything) "]" (opt (any "+" "*" "?") (opt "?")) eos)) (not (looking-at (rx "[:" (one-or-more anything) ":]" eos)))) (xr--report warnings (point) (format-message "Suspect skip set framed in `[...]'"))) (let ((negated (eq (following-char) ?^)) (start-pos (point)) (ranges nil) (classes nil)) (when negated (forward-char 1) (setq start-pos (point))) (while (not (eobp)) (cond ((looking-at (rx "[:" (group (*? anything)) ":]")) (let ((sym (intern (match-string 1)))) (unless (memq sym '(ascii alnum alpha blank cntrl digit graph lower multibyte nonascii print punct space unibyte upper word xdigit)) (error "No character class `%s'" (match-string 0))) ;; Another useful ad-hoc check. (when (and (eq (char-before) ?\[) (eq (char-after (match-end 0)) ?\])) (xr--report warnings (1- (point)) (format-message "Suspect character class framed in `[...]'"))) (when (memq sym classes) (xr--report warnings (point) (format-message "Duplicated character class `%s'" (match-string 0)))) (push sym classes))) ((looking-at (rx (or (seq "\\" (group anything)) (group (not (any "\\")))) (opt "-" (or (seq "\\" (group anything)) (group anything))))) (let ((start (string-to-char (or (match-string 1) (match-string 2)))) (end (or (and (match-beginning 3) (string-to-char (match-string 3))) (and (match-beginning 4) (string-to-char (match-string 4)))))) (when (and (match-beginning 1) (not (memq start '(?^ ?- ?\\)))) (xr--report warnings (point) (xr--escape-string (format-message "Unnecessarily escaped `%c'" start) nil))) (when (and (match-beginning 3) (not (memq end '(?^ ?- ?\\)))) (xr--report warnings (1- (match-beginning 3)) (xr--escape-string (format-message "Unnecessarily escaped `%c'" end) nil))) (when (and (eq start ?-) (not end) (match-beginning 2) (< start-pos (point) (1- (point-max)))) (xr--report warnings (point) (format-message "Literal `-' not first or last"))) (if (and end (> start end)) (xr--report warnings (point) (xr--escape-string (format-message "Reversed range `%c-%c'" start end) nil)) (cond ((eq start end) (xr--report warnings (point) (xr--escape-string (format-message "Single-element range `%c-%c'" start end) nil))) ((eq (1+ start) end) (xr--report warnings (point) (xr--escape-string (format-message "Two-element range `%c-%c'" start end) nil)))) (let ((tail ranges)) (while tail (let ((range (car tail))) (if (and (<= (car range) (or end start)) (<= start (cdr range))) (let ((msg (cond ((and end (< start end) (< (car range) (cdr range))) (format-message "Ranges `%c-%c' and `%c-%c' overlap" (car range) (cdr range) start end)) ((and end (< start end)) (format-message "Range `%c-%c' includes character `%c'" start end (car range))) ((< (car range) (cdr range)) (format-message "Character `%c' included in range `%c-%c'" start (car range) (cdr range))) (t (format-message "Duplicated character `%c'" start))))) (xr--report warnings (point) (xr--escape-string msg nil)) ;; Expand previous interval to include this range. (setcar range (min (car range) start)) (setcdr range (max (cdr range) (or end start))) (setq start nil) (setq tail nil)) (setq tail (cdr tail)))))) (when start (push (cons start (or end start)) ranges))))) ((looking-at (rx "\\" eos)) (xr--report warnings (point) (format-message "Stray `\\' at end of string")))) (goto-char (match-end 0))) (when (and (null ranges) (null classes)) (xr--report warnings (point-min) (if negated "Negated empty set matches anything" "Empty set matches nothing"))) (cond ;; Single non-negated character, like "-": make a string. ((and (not negated) (null classes) (= (length ranges) 1) (eq (caar ranges) (cdar ranges))) (regexp-quote (char-to-string (caar ranges)))) ;; Negated empty set, like "^": anything. ((and negated (null classes) (null ranges)) 'anything) ;; Single named class, like "[:nonascii:]": use the symbol. ((and (= (length classes) 1) (null ranges)) (if negated (list 'not (car classes)) (car classes))) ;; Anything else: produce (any ...) (t (let ((intervals nil) (chars nil)) (dolist (range ranges) (if (eq (car range) (cdr range)) (push (car range) chars) (push (string (car range) ?- (cdr range)) intervals))) ;; Put a single `-' last. (when (memq ?- chars) (setq chars (append (delq ?- chars) (list ?-)))) (let ((set (cons 'any (append (and intervals (list (apply #'concat intervals))) (and chars (list (apply #'string chars))) (nreverse classes))))) (if negated (list 'not set) set))))))) (defun xr--parse-skip-set (skip-string warnings) (with-temp-buffer (set-buffer-multibyte t) (insert skip-string) (goto-char (point-min)) (xr--parse-skip-set-buffer warnings))) (defun xr--substitute-keywords (head-alist body-alist rx) "Substitute keywords in RX using HEAD-ALIST and BODY-ALIST in the head and body positions, respectively." (cond ((symbolp rx) (or (cdr (assq rx body-alist)) rx)) ((consp rx) (cons (or (cdr (assq (car rx) head-alist)) (car rx)) (mapcar (lambda (elem) (xr--substitute-keywords head-alist body-alist elem)) (cdr rx)))) (t rx))) (defconst xr--keywords '((medium . nil) (brief . (((zero-or-more . 0+) (one-or-more . 1+)) . nil)) (terse . (((seq . :) (or . |) (any . in) (zero-or-more . *) (one-or-more . +) (opt . ? ) (repeat . **)) . nil)) (verbose . (((opt . zero-or-one)) . ((nonl . not-newline) (bol . line-start) (eol . line-end) (bos . string-start) (eos . string-end) (bow . word-start) (eow . word-end))))) "Alist mapping keyword dialect to (HEAD-ALIST . BODY-ALIST), or to nil if no translation should take place. The alists are mapping from the default choice.") (defun xr--in-dialect (rx dialect) (let ((keywords (assq (or dialect 'medium) xr--keywords))) (unless keywords (error "Unknown dialect `%S'" dialect)) (if (cdr keywords) (xr--substitute-keywords (cadr keywords) (cddr keywords) rx) rx))) ;;;###autoload (defun xr (re-string &optional dialect) "Convert a regexp string to rx notation; the inverse of `rx'. Passing the returned value to `rx' (or `rx-to-string') yields a regexp string equivalent to RE-STRING. DIALECT controls the choice of keywords, and is one of: `verbose' -- verbose keywords `brief' -- short keywords `terse' -- very short keywords `medium' or nil -- a compromise (the default)" (xr--in-dialect (xr--parse re-string nil nil) dialect)) ;;;###autoload (defun xr-skip-set (skip-set-string &optional dialect) "Convert a skip set string argument to rx notation. SKIP-SET-STRING is interpreted according to the syntax of `skip-chars-forward' and `skip-chars-backward' and converted to a character class on `rx' form. If desired, `rx' can then be used to convert the result to an ordinary regexp. See `xr' for a description of the DIALECT argument." (xr--in-dialect (xr--parse-skip-set skip-set-string nil) dialect)) ;;;###autoload (defun xr-lint (re-string &optional purpose) "Detect dubious practices and possible mistakes in RE-STRING. This includes uses of tolerated but discouraged constructs. Outright regexp syntax violations are signalled as errors. If PURPOSE is `file', perform additional checks assuming that RE-STRING is used to match a file name. Return a list of (OFFSET . COMMENT) where COMMENT applies at OFFSET in RE-STRING." (let ((warnings (list nil))) (xr--parse re-string warnings purpose) (sort (car warnings) #'car-less-than-car))) ;;;###autoload (defun xr-skip-set-lint (skip-set-string) "Detect dubious practices and possible mistakes in SKIP-SET-STRING. This includes uses of tolerated but discouraged constructs. Outright syntax violations are signalled as errors. The argument is interpreted according to the syntax of `skip-chars-forward' and `skip-chars-backward'. Return a list of (OFFSET . COMMENT) where COMMENT applies at OFFSET in SKIP-SET-STRING." (let ((warnings (list nil))) (xr--parse-skip-set skip-set-string warnings) (sort (car warnings) #'car-less-than-car))) (defun xr--escape-string (string escape-printable) "Escape non-printing characters in a string for maximum readability. If ESCAPE-PRINTABLE, also escape \\ and \", otherwise don't." (replace-regexp-in-string ;; We don't use rx here because of bugs in dealing with raw chars ;; prior to Emacs 27.1. "[\x00-\x1f\"\\\x7f\x80-\xff][[:xdigit:]]?" (lambda (s) (let* ((c (logand (string-to-char s) #xff)) (xdigit (substring s 1)) (transl (assq c '((?\b . "\\b") (?\t . "\\t") (?\n . "\\n") (?\v . "\\v") (?\f . "\\f") (?\r . "\\r") (?\e . "\\e"))))) ;; We prefer hex escapes (\xHH) because that is what most users ;; want today, but use octal (\OOO) if the following character ;; is a legitimate hex digit. (concat (cond (transl (cdr transl)) ((memq c '(?\\ ?\")) (if escape-printable (string ?\\ c) (string c))) ((zerop (length xdigit)) (format "\\x%02x" c)) (t (format (format "\\%03o" c)))) xdigit))) string 'fixedcase 'literal)) (defun xr--take (n list) "The N first elements of LIST." (butlast list (- (length list) n))) (defun xr--rx-list-to-string (rx plain-prefix) "Print the list `rx' to a string, unformatted. The first PLAIN-PREFIX elements are formatted using `prin1-to-string'; the rest with `xr--rx-to-string'." (concat "(" (mapconcat #'identity (append (mapcar #'prin1-to-string (xr--take plain-prefix rx)) (mapcar #'xr--rx-to-string (nthcdr plain-prefix rx))) " ") ")")) (defun xr--rx-to-string (rx) "Print an rx expression to a string, unformatted." (cond ((eq rx '*?) "*?") ; Avoid unnecessary \ in symbol. ((eq rx '+?) "+?") ((eq rx '\??) "\\??") ((stringp rx) (concat "\"" (xr--escape-string rx t) "\"")) ((characterp rx) (let ((esc (assq rx '((?\( . ?\() (?\) . ?\)) (?\[ . ?\[) (?\] . ?\]) (?\\ . ?\\) (?\; . ?\;) (?\" . ?\") (?\s . ?s) (?\n . ?n) (?\r . ?r) (?\t . ?t) (?\e . ?e) (?\b . ?b) (?\f . ?f) (?\v . ?v))))) (cond (esc (format "?\\%c" (cdr esc))) ;; Only base characters are displayed as ?char; this excludes ;; controls, combining, surrogates, noncharacters etc. ((aref (char-category-set rx) ?.) (format "?%c" rx)) (t (format "#x%02x" rx))))) ((atom rx) (prin1-to-string rx)) ((nlistp (cdr rx)) (format "(%s . %s)" (xr--rx-to-string (car rx)) (xr--rx-to-string (cdr rx)))) ((or (eq (car rx) '**) (and (eq (car rx) 'repeat) (> (length rx) 3))) ;; First 2 args are integers. (xr--rx-list-to-string rx 3)) ((memq (car rx) '(= >= repeat group-n backref)) ;; First arg is integer. (xr--rx-list-to-string rx 2)) (t ;; Render the space character as ? when first in a list. ;; Elsewhere, it's a character or integer. (let ((first (if (eq (car rx) ?\s) "?" (xr--rx-to-string (car rx)))) (rest (mapcar #'xr--rx-to-string (cdr rx)))) (concat "(" (mapconcat #'identity (cons first rest) " ") ")"))))) (defun xr-pp-rx-to-str (rx) "Pretty-print the regexp RX (in rx notation) to a string. It does a slightly better job than standard `pp' for rx purposes." (with-temp-buffer (insert (xr--rx-to-string rx) "\n") (pp-buffer) ;; Remove the line break after short operator names for ;; readability and compactness. (goto-char (point-min)) (while (re-search-forward (rx "(" (** 1 4 (any "a-z0-9" "+?:|*=>")) (group "\n" (zero-or-more blank))) nil t) (replace-match " " t t nil 1)) ;; Reindent the buffer in case line breaks have been removed. (goto-char (point-min)) (indent-sexp) (buffer-string))) ;;;###autoload (defun xr-pp (re-string &optional dialect) "Convert to `rx' notation and output the pretty-printed result. This function uses `xr' to translate RE-STRING into DIALECT. It is intended for use from an interactive elisp session. See `xr' for a description of the DIALECT argument." (insert (xr-pp-rx-to-str (xr re-string dialect)))) ;;;###autoload (defun xr-skip-set-pp (skip-set-string &optional dialect) "Convert a skip set string to `rx' notation and pretty-print. This function uses `xr-skip-set' to translate SKIP-SET-STRING into DIALECT. It is intended for use from an interactive elisp session. See `xr' for a description of the DIALECT argument." (insert (xr-pp-rx-to-str (xr-skip-set skip-set-string dialect)))) (provide 'xr) ;;; xr.el ends here