#!/home/logicmoo_workspace/.platformio/penv/bin/python #------------------------------------------------------------------------------- # scripts/readelf.py # # A clone of 'readelf' in Python, based on the pyelftools library # # Eli Bendersky (eliben@gmail.com) # This code is in the public domain #------------------------------------------------------------------------------- import argparse import os, sys import string import traceback import itertools # Note: zip has different behaviour between Python 2.x and 3.x. # - Using izip ensures compatibility. try: from itertools import izip except: izip = zip # For running from development directory. It should take precedence over the # installed pyelftools. sys.path.insert(0, '.') from elftools import __version__ from elftools.common.exceptions import ELFError from elftools.common.py3compat import ( ifilter, byte2int, bytes2str, itervalues, str2bytes, iterbytes) from elftools.elf.elffile import ELFFile from elftools.elf.dynamic import DynamicSection, DynamicSegment from elftools.elf.enums import ENUM_D_TAG from elftools.elf.segments import InterpSegment from elftools.elf.sections import ( NoteSection, SymbolTableSection, SymbolTableIndexSection ) from elftools.elf.gnuversions import ( GNUVerSymSection, GNUVerDefSection, GNUVerNeedSection, ) from elftools.elf.relocation import RelocationSection from elftools.elf.descriptions import ( describe_ei_class, describe_ei_data, describe_ei_version, describe_ei_osabi, describe_e_type, describe_e_machine, describe_e_version_numeric, describe_p_type, describe_p_flags, describe_rh_flags, describe_sh_type, describe_sh_flags, describe_symbol_type, describe_symbol_bind, describe_symbol_visibility, describe_symbol_shndx, describe_reloc_type, describe_dyn_tag, describe_dt_flags, describe_dt_flags_1, describe_ver_flags, describe_note, describe_attr_tag_arm ) from elftools.elf.constants import E_FLAGS from elftools.elf.constants import E_FLAGS_MASKS from elftools.elf.constants import SH_FLAGS from elftools.elf.constants import SHN_INDICES from elftools.dwarf.dwarfinfo import DWARFInfo from elftools.dwarf.descriptions import ( describe_reg_name, describe_attr_value, set_global_machine_arch, describe_CFI_instructions, describe_CFI_register_rule, describe_CFI_CFA_rule, describe_DWARF_expr ) from elftools.dwarf.constants import ( DW_LNS_copy, DW_LNS_set_file, DW_LNE_define_file) from elftools.dwarf.locationlists import LocationParser, LocationEntry from elftools.dwarf.callframe import CIE, FDE, ZERO from elftools.ehabi.ehabiinfo import CorruptEHABIEntry, CannotUnwindEHABIEntry, GenericEHABIEntry class ReadElf(object): """ display_* methods are used to emit output into the output stream """ def __init__(self, file, output): """ file: stream object with the ELF file to read output: output stream to write to """ self.elffile = ELFFile(file) self.output = output # Lazily initialized if a debug dump is requested self._dwarfinfo = None self._versioninfo = None self._shndx_sections = None def display_file_header(self): """ Display the ELF file header """ self._emitline('ELF Header:') self._emit(' Magic: ') self._emit(' '.join('%2.2x' % byte2int(b) for b in self.elffile.e_ident_raw)) self._emitline(' ') header = self.elffile.header e_ident = header['e_ident'] self._emitline(' Class: %s' % describe_ei_class(e_ident['EI_CLASS'])) self._emitline(' Data: %s' % describe_ei_data(e_ident['EI_DATA'])) self._emitline(' Version: %s' % describe_ei_version(e_ident['EI_VERSION'])) self._emitline(' OS/ABI: %s' % describe_ei_osabi(e_ident['EI_OSABI'])) self._emitline(' ABI Version: %d' % e_ident['EI_ABIVERSION']) self._emitline(' Type: %s' % describe_e_type(header['e_type'])) self._emitline(' Machine: %s' % describe_e_machine(header['e_machine'])) self._emitline(' Version: %s' % describe_e_version_numeric(header['e_version'])) self._emitline(' Entry point address: %s' % self._format_hex(header['e_entry'])) self._emit(' Start of program headers: %s' % header['e_phoff']) self._emitline(' (bytes into file)') self._emit(' Start of section headers: %s' % header['e_shoff']) self._emitline(' (bytes into file)') self._emitline(' Flags: %s%s' % (self._format_hex(header['e_flags']), self.decode_flags(header['e_flags']))) self._emitline(' Size of this header: %s (bytes)' % header['e_ehsize']) self._emitline(' Size of program headers: %s (bytes)' % header['e_phentsize']) self._emitline(' Number of program headers: %s' % header['e_phnum']) self._emitline(' Size of section headers: %s (bytes)' % header['e_shentsize']) self._emit(' Number of section headers: %s' % header['e_shnum']) if header['e_shnum'] == 0 and self.elffile.num_sections() != 0: self._emitline(' (%d)' % self.elffile.num_sections()) else: self._emitline('') self._emit(' Section header string table index: %s' % header['e_shstrndx']) if header['e_shstrndx'] == SHN_INDICES.SHN_XINDEX: self._emitline(' (%d)' % self.elffile.get_shstrndx()) else: self._emitline('') def decode_flags(self, flags): description = "" if self.elffile['e_machine'] == "EM_ARM": eabi = flags & E_FLAGS.EF_ARM_EABIMASK flags &= ~E_FLAGS.EF_ARM_EABIMASK if flags & E_FLAGS.EF_ARM_RELEXEC: description += ', relocatable executabl' flags &= ~E_FLAGS.EF_ARM_RELEXEC if eabi == E_FLAGS.EF_ARM_EABI_VER5: EF_ARM_KNOWN_FLAGS = E_FLAGS.EF_ARM_ABI_FLOAT_SOFT|E_FLAGS.EF_ARM_ABI_FLOAT_HARD|E_FLAGS.EF_ARM_LE8|E_FLAGS.EF_ARM_BE8 description += ', Version5 EABI' if flags & E_FLAGS.EF_ARM_ABI_FLOAT_SOFT: description += ", soft-float ABI" elif flags & E_FLAGS.EF_ARM_ABI_FLOAT_HARD: description += ", hard-float ABI" if flags & E_FLAGS.EF_ARM_BE8: description += ", BE8" elif flags & E_FLAGS.EF_ARM_LE8: description += ", LE8" if flags & ~EF_ARM_KNOWN_FLAGS: description += ', ' else: description += ', ' elif self.elffile['e_machine'] == "EM_MIPS": if flags & E_FLAGS.EF_MIPS_NOREORDER: description += ", noreorder" if flags & E_FLAGS.EF_MIPS_PIC: description += ", pic" if flags & E_FLAGS.EF_MIPS_CPIC: description += ", cpic" if (flags & E_FLAGS.EF_MIPS_ABI2): description += ", abi2" if (flags & E_FLAGS.EF_MIPS_32BITMODE): description += ", 32bitmode" if (flags & E_FLAGS_MASKS.EFM_MIPS_ABI_O32): description += ", o32" elif (flags & E_FLAGS_MASKS.EFM_MIPS_ABI_O64): description += ", o64" elif (flags & E_FLAGS_MASKS.EFM_MIPS_ABI_EABI32): description += ", eabi32" elif (flags & E_FLAGS_MASKS.EFM_MIPS_ABI_EABI64): description += ", eabi64" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_1: description += ", mips1" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_2: description += ", mips2" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_3: description += ", mips3" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_4: description += ", mips4" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_5: description += ", mips5" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_32R2: description += ", mips32r2" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_64R2: description += ", mips64r2" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_32: description += ", mips32" if (flags & E_FLAGS.EF_MIPS_ARCH) == E_FLAGS.EF_MIPS_ARCH_64: description += ", mips64" return description def display_program_headers(self, show_heading=True): """ Display the ELF program headers. If show_heading is True, displays the heading for this information (Elf file type is...) """ self._emitline() if self.elffile.num_segments() == 0: self._emitline('There are no program headers in this file.') return elfheader = self.elffile.header if show_heading: self._emitline('Elf file type is %s' % describe_e_type(elfheader['e_type'])) self._emitline('Entry point is %s' % self._format_hex(elfheader['e_entry'])) # readelf weirness - why isn't e_phoff printed as hex? (for section # headers, it is...) self._emitline('There are %s program headers, starting at offset %s' % ( self.elffile.num_segments(), elfheader['e_phoff'])) self._emitline() self._emitline('Program Headers:') # Now comes the table of program headers with their attributes. Note # that due to different formatting constraints of 32-bit and 64-bit # addresses, there are some conditions on elfclass here. # # First comes the table heading # if self.elffile.elfclass == 32: self._emitline(' Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align') else: self._emitline(' Type Offset VirtAddr PhysAddr') self._emitline(' FileSiz MemSiz Flags Align') # Now the entries # for segment in self.elffile.iter_segments(): self._emit(' %-14s ' % describe_p_type(segment['p_type'])) if self.elffile.elfclass == 32: self._emitline('%s %s %s %s %s %-3s %s' % ( self._format_hex(segment['p_offset'], fieldsize=6), self._format_hex(segment['p_vaddr'], fullhex=True), self._format_hex(segment['p_paddr'], fullhex=True), self._format_hex(segment['p_filesz'], fieldsize=5), self._format_hex(segment['p_memsz'], fieldsize=5), describe_p_flags(segment['p_flags']), self._format_hex(segment['p_align']))) else: # 64 self._emitline('%s %s %s' % ( self._format_hex(segment['p_offset'], fullhex=True), self._format_hex(segment['p_vaddr'], fullhex=True), self._format_hex(segment['p_paddr'], fullhex=True))) self._emitline(' %s %s %-3s %s' % ( self._format_hex(segment['p_filesz'], fullhex=True), self._format_hex(segment['p_memsz'], fullhex=True), describe_p_flags(segment['p_flags']), # lead0x set to False for p_align, to mimic readelf. # No idea why the difference from 32-bit mode :-| self._format_hex(segment['p_align'], lead0x=False))) if isinstance(segment, InterpSegment): self._emitline(' [Requesting program interpreter: %s]' % segment.get_interp_name()) # Sections to segments mapping # if self.elffile.num_sections() == 0: # No sections? We're done return self._emitline('\n Section to Segment mapping:') self._emitline(' Segment Sections...') for nseg, segment in enumerate(self.elffile.iter_segments()): self._emit(' %2.2d ' % nseg) for section in self.elffile.iter_sections(): if ( not section.is_null() and not ((section['sh_flags'] & SH_FLAGS.SHF_TLS) != 0 and section['sh_type'] == 'SHT_NOBITS' and segment['p_type'] != 'PT_TLS') and segment.section_in_segment(section)): self._emit('%s ' % section.name) self._emitline('') def display_section_headers(self, show_heading=True): """ Display the ELF section headers """ elfheader = self.elffile.header if show_heading: self._emitline('There are %s section headers, starting at offset %s' % ( elfheader['e_shnum'], self._format_hex(elfheader['e_shoff']))) if self.elffile.num_sections() == 0: self._emitline('There are no sections in this file.') return self._emitline('\nSection Header%s:' % ( 's' if self.elffile.num_sections() > 1 else '')) # Different formatting constraints of 32-bit and 64-bit addresses # if self.elffile.elfclass == 32: self._emitline(' [Nr] Name Type Addr Off Size ES Flg Lk Inf Al') else: self._emitline(' [Nr] Name Type Address Offset') self._emitline(' Size EntSize Flags Link Info Align') # Now the entries # for nsec, section in enumerate(self.elffile.iter_sections()): self._emit(' [%2u] %-17.17s %-15.15s ' % ( nsec, section.name, describe_sh_type(section['sh_type']))) if self.elffile.elfclass == 32: self._emitline('%s %s %s %s %3s %2s %3s %2s' % ( self._format_hex(section['sh_addr'], fieldsize=8, lead0x=False), self._format_hex(section['sh_offset'], fieldsize=6, lead0x=False), self._format_hex(section['sh_size'], fieldsize=6, lead0x=False), self._format_hex(section['sh_entsize'], fieldsize=2, lead0x=False), describe_sh_flags(section['sh_flags']), section['sh_link'], section['sh_info'], section['sh_addralign'])) else: # 64 self._emitline(' %s %s' % ( self._format_hex(section['sh_addr'], fullhex=True, lead0x=False), self._format_hex(section['sh_offset'], fieldsize=16 if section['sh_offset'] > 0xffffffff else 8, lead0x=False))) self._emitline(' %s %s %3s %2s %3s %s' % ( self._format_hex(section['sh_size'], fullhex=True, lead0x=False), self._format_hex(section['sh_entsize'], fullhex=True, lead0x=False), describe_sh_flags(section['sh_flags']), section['sh_link'], section['sh_info'], section['sh_addralign'])) self._emitline('Key to Flags:') self._emitline(' W (write), A (alloc), X (execute), M (merge),' ' S (strings), I (info),') self._emitline(' L (link order), O (extra OS processing required),' ' G (group), T (TLS),') self._emitline(' C (compressed), x (unknown), o (OS specific),' ' E (exclude),') self._emit(' ') if self.elffile['e_machine'] == 'EM_ARM': self._emit('y (purecode), ') self._emitline('p (processor specific)') def display_symbol_tables(self): """ Display the symbol tables contained in the file """ self._init_versioninfo() symbol_tables = [(idx, s) for idx, s in enumerate(self.elffile.iter_sections()) if isinstance(s, SymbolTableSection)] if not symbol_tables and self.elffile.num_sections() == 0: self._emitline('') self._emitline('Dynamic symbol information is not available for' ' displaying symbols.') for section_index, section in symbol_tables: if not isinstance(section, SymbolTableSection): continue if section['sh_entsize'] == 0: self._emitline("\nSymbol table '%s' has a sh_entsize of zero!" % ( section.name)) continue self._emitline("\nSymbol table '%s' contains %s entries:" % ( section.name, section.num_symbols())) if self.elffile.elfclass == 32: self._emitline(' Num: Value Size Type Bind Vis Ndx Name') else: # 64 self._emitline(' Num: Value Size Type Bind Vis Ndx Name') for nsym, symbol in enumerate(section.iter_symbols()): version_info = '' # readelf doesn't display version info for Solaris versioning if (section['sh_type'] == 'SHT_DYNSYM' and self._versioninfo['type'] == 'GNU'): version = self._symbol_version(nsym) if (version['name'] != symbol.name and version['index'] not in ('VER_NDX_LOCAL', 'VER_NDX_GLOBAL')): if version['filename']: # external symbol version_info = '@%(name)s (%(index)i)' % version else: # internal symbol if version['hidden']: version_info = '@%(name)s' % version else: version_info = '@@%(name)s' % version # symbol names are truncated to 25 chars, similarly to readelf self._emitline('%6d: %s %s %-7s %-6s %-7s %4s %.25s%s' % ( nsym, self._format_hex( symbol['st_value'], fullhex=True, lead0x=False), "%5d" % symbol['st_size'] if symbol['st_size'] < 100000 else hex(symbol['st_size']), describe_symbol_type(symbol['st_info']['type']), describe_symbol_bind(symbol['st_info']['bind']), describe_symbol_visibility(symbol['st_other']['visibility']), describe_symbol_shndx(self._get_symbol_shndx(symbol, nsym, section_index)), symbol.name, version_info)) def display_dynamic_tags(self): """ Display the dynamic tags contained in the file """ has_dynamic_sections = False for section in self.elffile.iter_sections(): if not isinstance(section, DynamicSection): continue has_dynamic_sections = True self._emitline("\nDynamic section at offset %s contains %s entries:" % ( self._format_hex(section['sh_offset']), section.num_tags())) self._emitline(" Tag Type Name/Value") padding = 20 + (8 if self.elffile.elfclass == 32 else 0) for tag in section.iter_tags(): if tag.entry.d_tag == 'DT_NEEDED': parsed = 'Shared library: [%s]' % tag.needed elif tag.entry.d_tag == 'DT_RPATH': parsed = 'Library rpath: [%s]' % tag.rpath elif tag.entry.d_tag == 'DT_RUNPATH': parsed = 'Library runpath: [%s]' % tag.runpath elif tag.entry.d_tag == 'DT_SONAME': parsed = 'Library soname: [%s]' % tag.soname elif tag.entry.d_tag.endswith(('SZ', 'ENT')): parsed = '%i (bytes)' % tag['d_val'] elif tag.entry.d_tag == 'DT_FLAGS': parsed = describe_dt_flags(tag.entry.d_val) elif tag.entry.d_tag == 'DT_FLAGS_1': parsed = 'Flags: %s' % describe_dt_flags_1(tag.entry.d_val) elif tag.entry.d_tag.endswith(('NUM', 'COUNT')): parsed = '%i' % tag['d_val'] elif tag.entry.d_tag == 'DT_PLTREL': s = describe_dyn_tag(tag.entry.d_val) if s.startswith('DT_'): s = s[3:] parsed = '%s' % s elif tag.entry.d_tag == 'DT_MIPS_FLAGS': parsed = describe_rh_flags(tag.entry.d_val) elif tag.entry.d_tag in ('DT_MIPS_SYMTABNO', 'DT_MIPS_LOCAL_GOTNO'): parsed = str(tag.entry.d_val) else: parsed = '%#x' % tag['d_val'] self._emitline(" %s %-*s %s" % ( self._format_hex(ENUM_D_TAG.get(tag.entry.d_tag, tag.entry.d_tag), fullhex=True, lead0x=True), padding, '(%s)' % (tag.entry.d_tag[3:],), parsed)) if not has_dynamic_sections: self._emitline("\nThere is no dynamic section in this file.") def display_notes(self): """ Display the notes contained in the file """ for section in self.elffile.iter_sections(): if isinstance(section, NoteSection): for note in section.iter_notes(): self._emitline("\nDisplaying notes found in: {}".format( section.name)) self._emitline(' Owner Data size Description') self._emitline(' %s %s\t%s' % ( note['n_name'].ljust(20), self._format_hex(note['n_descsz'], fieldsize=8), describe_note(note))) def display_relocations(self): """ Display the relocations contained in the file """ has_relocation_sections = False for section in self.elffile.iter_sections(): if not isinstance(section, RelocationSection): continue has_relocation_sections = True self._emitline("\nRelocation section '%.128s' at offset %s contains %s entries:" % ( section.name, self._format_hex(section['sh_offset']), section.num_relocations())) if section.is_RELA(): self._emitline(" Offset Info Type Sym. Value Sym. Name + Addend") else: self._emitline(" Offset Info Type Sym.Value Sym. Name") # The symbol table section pointed to in sh_link symtable = self.elffile.get_section(section['sh_link']) for rel in section.iter_relocations(): hexwidth = 8 if self.elffile.elfclass == 32 else 12 self._emit('%s %s %-17.17s' % ( self._format_hex(rel['r_offset'], fieldsize=hexwidth, lead0x=False), self._format_hex(rel['r_info'], fieldsize=hexwidth, lead0x=False), describe_reloc_type( rel['r_info_type'], self.elffile))) if rel['r_info_sym'] == 0: if section.is_RELA(): fieldsize = 8 if self.elffile.elfclass == 32 else 16 addend = self._format_hex(rel['r_addend'], lead0x=False) self._emit(' %s %s' % (' ' * fieldsize, addend)) self._emitline() else: symbol = symtable.get_symbol(rel['r_info_sym']) # Some symbols have zero 'st_name', so instead what's used # is the name of the section they point at. Truncate symbol # names (excluding version info) to 22 chars, similarly to # readelf. if symbol['st_name'] == 0: symsecidx = self._get_symbol_shndx(symbol, rel['r_info_sym'], section['sh_link']) symsec = self.elffile.get_section(symsecidx) symbol_name = symsec.name version = '' else: symbol_name = symbol.name version = self._symbol_version(rel['r_info_sym']) version = (version['name'] if version and version['name'] else '') symbol_name = '%.22s' % symbol_name if version: symbol_name += '@' + version self._emit(' %s %s' % ( self._format_hex( symbol['st_value'], fullhex=True, lead0x=False), symbol_name)) if section.is_RELA(): self._emit(' %s %x' % ( '+' if rel['r_addend'] >= 0 else '-', abs(rel['r_addend']))) self._emitline() # Emit the two additional relocation types for ELF64 MIPS # binaries. if (self.elffile.elfclass == 64 and self.elffile['e_machine'] == 'EM_MIPS'): for i in (2, 3): rtype = rel['r_info_type%s' % i] self._emit(' Type%s: %s' % ( i, describe_reloc_type(rtype, self.elffile))) self._emitline() if not has_relocation_sections: self._emitline('\nThere are no relocations in this file.') def display_arm_unwind(self): if not self.elffile.has_ehabi_info(): self._emitline('There are no .ARM.idx sections in this file.') return for ehabi_info in self.elffile.get_ehabi_infos(): # Unwind section '.ARM.exidx' at offset 0x203e8 contains 1009 entries: self._emitline("\nUnwind section '%s' at offset 0x%x contains %d entries" % ( ehabi_info.section_name(), ehabi_info.section_offset(), ehabi_info.num_entry() )) for i in range(ehabi_info.num_entry()): entry = ehabi_info.get_entry(i) self._emitline() self._emitline("Entry %d:" % i) if isinstance(entry, CorruptEHABIEntry): self._emitline(" [corrupt] %s" % entry.reason) continue self._emit(" Function offset 0x%x: " % entry.function_offset) if isinstance(entry, CannotUnwindEHABIEntry): self._emitline("[cantunwind]") continue elif entry.eh_table_offset: self._emitline("@0x%x" % entry.eh_table_offset) else: self._emitline("Compact (inline)") if isinstance(entry, GenericEHABIEntry): self._emitline(" Personality: 0x%x" % entry.personality) else: self._emitline(" Compact model index: %d" % entry.personality) for mnemonic_item in entry.mnmemonic_array(): self._emit(' ') self._emitline(mnemonic_item) def display_version_info(self): """ Display the version info contained in the file """ self._init_versioninfo() if not self._versioninfo['type']: self._emitline("\nNo version information found in this file.") return for section in self.elffile.iter_sections(): if isinstance(section, GNUVerSymSection): self._print_version_section_header( section, 'Version symbols', lead0x=False) num_symbols = section.num_symbols() # Symbol version info are printed four by four entries for idx_by_4 in range(0, num_symbols, 4): self._emit(' %03x:' % idx_by_4) for idx in range(idx_by_4, min(idx_by_4 + 4, num_symbols)): symbol_version = self._symbol_version(idx) if symbol_version['index'] == 'VER_NDX_LOCAL': version_index = 0 version_name = '(*local*)' elif symbol_version['index'] == 'VER_NDX_GLOBAL': version_index = 1 version_name = '(*global*)' else: version_index = symbol_version['index'] version_name = '(%(name)s)' % symbol_version visibility = 'h' if symbol_version['hidden'] else ' ' self._emit('%4x%s%-13s' % ( version_index, visibility, version_name)) self._emitline() elif isinstance(section, GNUVerDefSection): self._print_version_section_header( section, 'Version definition', indent=2) offset = 0 for verdef, verdaux_iter in section.iter_versions(): verdaux = next(verdaux_iter) name = verdaux.name if verdef['vd_flags']: flags = describe_ver_flags(verdef['vd_flags']) # Mimic exactly the readelf output flags += ' ' else: flags = 'none' self._emitline(' %s: Rev: %i Flags: %s Index: %i' ' Cnt: %i Name: %s' % ( self._format_hex(offset, fieldsize=6, alternate=True), verdef['vd_version'], flags, verdef['vd_ndx'], verdef['vd_cnt'], name)) verdaux_offset = ( offset + verdef['vd_aux'] + verdaux['vda_next']) for idx, verdaux in enumerate(verdaux_iter, start=1): self._emitline(' %s: Parent %i: %s' % (self._format_hex(verdaux_offset, fieldsize=4), idx, verdaux.name)) verdaux_offset += verdaux['vda_next'] offset += verdef['vd_next'] elif isinstance(section, GNUVerNeedSection): self._print_version_section_header(section, 'Version needs') offset = 0 for verneed, verneed_iter in section.iter_versions(): self._emitline(' %s: Version: %i File: %s Cnt: %i' % ( self._format_hex(offset, fieldsize=6, alternate=True), verneed['vn_version'], verneed.name, verneed['vn_cnt'])) vernaux_offset = offset + verneed['vn_aux'] for idx, vernaux in enumerate(verneed_iter, start=1): if vernaux['vna_flags']: flags = describe_ver_flags(vernaux['vna_flags']) # Mimic exactly the readelf output flags += ' ' else: flags = 'none' self._emitline( ' %s: Name: %s Flags: %s Version: %i' % ( self._format_hex(vernaux_offset, fieldsize=4), vernaux.name, flags, vernaux['vna_other'])) vernaux_offset += vernaux['vna_next'] offset += verneed['vn_next'] def display_arch_specific(self): """ Display the architecture-specific info contained in the file. """ if self.elffile['e_machine'] == 'EM_ARM': self._display_arch_specific_arm() def display_hex_dump(self, section_spec): """ Display a hex dump of a section. section_spec is either a section number or a name. """ section = self._section_from_spec(section_spec) if section is None: # readelf prints the warning to stderr. Even though stderrs are not compared # in tests, we comply with that behavior. sys.stderr.write('readelf: Warning: Section \'%s\' was not dumped because it does not exist!\n' % ( section_spec)) return if section['sh_type'] == 'SHT_NOBITS': self._emitline("\nSection '%s' has no data to dump." % ( section_spec)) return self._emitline("\nHex dump of section '%s':" % section.name) self._note_relocs_for_section(section) addr = section['sh_addr'] data = section.data() dataptr = 0 while dataptr < len(data): bytesleft = len(data) - dataptr # chunks of 16 bytes per line linebytes = 16 if bytesleft > 16 else bytesleft self._emit(' %s ' % self._format_hex(addr, fieldsize=8)) for i in range(16): if i < linebytes: self._emit('%2.2x' % byte2int(data[dataptr + i])) else: self._emit(' ') if i % 4 == 3: self._emit(' ') for i in range(linebytes): c = data[dataptr + i : dataptr + i + 1] if byte2int(c[0]) >= 32 and byte2int(c[0]) < 0x7f: self._emit(bytes2str(c)) else: self._emit(bytes2str(b'.')) self._emitline() addr += linebytes dataptr += linebytes self._emitline() def display_string_dump(self, section_spec): """ Display a strings dump of a section. section_spec is either a section number or a name. """ section = self._section_from_spec(section_spec) if section is None: # readelf prints the warning to stderr. Even though stderrs are not compared # in tests, we comply with that behavior. sys.stderr.write('readelf.py: Warning: Section \'%s\' was not dumped because it does not exist!\n' % ( section_spec)) return if section['sh_type'] == 'SHT_NOBITS': self._emitline("\nSection '%s' has no data to dump." % ( section_spec)) return self._emitline("\nString dump of section '%s':" % section.name) found = False data = section.data() dataptr = 0 while dataptr < len(data): while ( dataptr < len(data) and not (32 <= byte2int(data[dataptr]) <= 127)): dataptr += 1 if dataptr >= len(data): break endptr = dataptr while endptr < len(data) and byte2int(data[endptr]) != 0: endptr += 1 found = True self._emitline(' [%6x] %s' % ( dataptr, bytes2str(data[dataptr:endptr]))) dataptr = endptr if not found: self._emitline(' No strings found in this section.') else: self._emitline() def display_debug_dump(self, dump_what): """ Dump a DWARF section """ self._init_dwarfinfo() if self._dwarfinfo is None: return set_global_machine_arch(self.elffile.get_machine_arch()) if dump_what == 'info': self._dump_debug_info() elif dump_what == 'decodedline': self._dump_debug_line_programs() elif dump_what == 'frames': self._dump_debug_frames() elif dump_what == 'frames-interp': self._dump_debug_frames_interp() elif dump_what == 'aranges': self._dump_debug_aranges() elif dump_what in { 'pubtypes', 'pubnames' }: self._dump_debug_namelut(dump_what) elif dump_what == 'loc': self._dump_debug_locations() else: self._emitline('debug dump not yet supported for "%s"' % dump_what) def _format_hex(self, addr, fieldsize=None, fullhex=False, lead0x=True, alternate=False): """ Format an address into a hexadecimal string. fieldsize: Size of the hexadecimal field (with leading zeros to fit the address into. For example with fieldsize=8, the format will be %08x If None, the minimal required field size will be used. fullhex: If True, override fieldsize to set it to the maximal size needed for the elfclass lead0x: If True, leading 0x is added alternate: If True, override lead0x to emulate the alternate hexadecimal form specified in format string with the # character: only non-zero values are prefixed with 0x. This form is used by readelf. """ if alternate: if addr == 0: lead0x = False else: lead0x = True fieldsize -= 2 s = '0x' if lead0x else '' if fullhex: fieldsize = 8 if self.elffile.elfclass == 32 else 16 if fieldsize is None: field = '%x' else: field = '%' + '0%sx' % fieldsize return s + field % addr def _print_version_section_header(self, version_section, name, lead0x=True, indent=1): """ Print a section header of one version related section (versym, verneed or verdef) with some options to accomodate readelf little differences between each header (e.g. indentation and 0x prefixing). """ if hasattr(version_section, 'num_versions'): num_entries = version_section.num_versions() else: num_entries = version_section.num_symbols() self._emitline("\n%s section '%s' contains %s entries:" % (name, version_section.name, num_entries)) self._emitline('%sAddr: %s Offset: %s Link: %i (%s)' % ( ' ' * indent, self._format_hex( version_section['sh_addr'], fieldsize=16, lead0x=lead0x), self._format_hex( version_section['sh_offset'], fieldsize=6, lead0x=True), version_section['sh_link'], self.elffile.get_section(version_section['sh_link']).name ) ) def _init_versioninfo(self): """ Search and initialize informations about version related sections and the kind of versioning used (GNU or Solaris). """ if self._versioninfo is not None: return self._versioninfo = {'versym': None, 'verdef': None, 'verneed': None, 'type': None} for section in self.elffile.iter_sections(): if isinstance(section, GNUVerSymSection): self._versioninfo['versym'] = section elif isinstance(section, GNUVerDefSection): self._versioninfo['verdef'] = section elif isinstance(section, GNUVerNeedSection): self._versioninfo['verneed'] = section elif isinstance(section, DynamicSection): for tag in section.iter_tags(): if tag['d_tag'] == 'DT_VERSYM': self._versioninfo['type'] = 'GNU' break if not self._versioninfo['type'] and ( self._versioninfo['verneed'] or self._versioninfo['verdef']): self._versioninfo['type'] = 'Solaris' def _symbol_version(self, nsym): """ Return a dict containing information on the or None if no version information is available """ self._init_versioninfo() symbol_version = dict.fromkeys(('index', 'name', 'filename', 'hidden')) if (not self._versioninfo['versym'] or nsym >= self._versioninfo['versym'].num_symbols()): return None symbol = self._versioninfo['versym'].get_symbol(nsym) index = symbol.entry['ndx'] if not index in ('VER_NDX_LOCAL', 'VER_NDX_GLOBAL'): index = int(index) if self._versioninfo['type'] == 'GNU': # In GNU versioning mode, the highest bit is used to # store whether the symbol is hidden or not if index & 0x8000: index &= ~0x8000 symbol_version['hidden'] = True if (self._versioninfo['verdef'] and index <= self._versioninfo['verdef'].num_versions()): _, verdaux_iter = \ self._versioninfo['verdef'].get_version(index) symbol_version['name'] = next(verdaux_iter).name else: verneed, vernaux = \ self._versioninfo['verneed'].get_version(index) symbol_version['name'] = vernaux.name symbol_version['filename'] = verneed.name symbol_version['index'] = index return symbol_version def _section_from_spec(self, spec): """ Retrieve a section given a "spec" (either number or name). Return None if no such section exists in the file. """ try: num = int(spec) if num < self.elffile.num_sections(): return self.elffile.get_section(num) else: return None except ValueError: # Not a number. Must be a name then return self.elffile.get_section_by_name(spec) def _get_symbol_shndx(self, symbol, symbol_index, symtab_index): """ Get the index into the section header table for the "symbol" at "symbol_index" located in the symbol table with section index "symtab_index". """ symbol_shndx = symbol['st_shndx'] if symbol_shndx != SHN_INDICES.SHN_XINDEX: return symbol_shndx # Check for or lazily construct index section mapping (symbol table # index -> corresponding symbol table index section object) if self._shndx_sections is None: self._shndx_sections = {sec.symboltable: sec for sec in self.elffile.iter_sections() if isinstance(sec, SymbolTableIndexSection)} return self._shndx_sections[symtab_index].get_section_index(symbol_index) def _note_relocs_for_section(self, section): """ If there are relocation sections pointing to the givne section, emit a note about it. """ for relsec in self.elffile.iter_sections(): if isinstance(relsec, RelocationSection): info_idx = relsec['sh_info'] if self.elffile.get_section(info_idx) == section: self._emitline(' Note: This section has relocations against it, but these have NOT been applied to this dump.') return def _init_dwarfinfo(self): """ Initialize the DWARF info contained in the file and assign it to self._dwarfinfo. Leave self._dwarfinfo at None if no DWARF info was found in the file """ if self._dwarfinfo is not None: return if self.elffile.has_dwarf_info(): self._dwarfinfo = self.elffile.get_dwarf_info() else: self._dwarfinfo = None def _dump_debug_info(self): """ Dump the debugging info section. """ if not self._dwarfinfo.has_debug_info: return self._emitline('Contents of the %s section:\n' % self._dwarfinfo.debug_info_sec.name) # Offset of the .debug_info section in the stream section_offset = self._dwarfinfo.debug_info_sec.global_offset for cu in self._dwarfinfo.iter_CUs(): self._emitline(' Compilation Unit @ offset %s:' % self._format_hex(cu.cu_offset)) self._emitline(' Length: %s (%s)' % ( self._format_hex(cu['unit_length']), '%s-bit' % cu.dwarf_format())) self._emitline(' Version: %s' % cu['version']), self._emitline(' Abbrev Offset: %s' % ( self._format_hex(cu['debug_abbrev_offset']))), self._emitline(' Pointer Size: %s' % cu['address_size']) # The nesting depth of each DIE within the tree of DIEs must be # displayed. To implement this, a counter is incremented each time # the current DIE has children, and decremented when a null die is # encountered. Due to the way the DIE tree is serialized, this will # correctly reflect the nesting depth # die_depth = 0 current_function = None for die in cu.iter_DIEs(): if die.tag == 'DW_TAG_subprogram': current_function = die self._emitline(' <%s><%x>: Abbrev Number: %s%s' % ( die_depth, die.offset, die.abbrev_code, (' (%s)' % die.tag) if not die.is_null() else '')) if die.is_null(): die_depth -= 1 continue for attr in itervalues(die.attributes): name = attr.name # Unknown attribute values are passed-through as integers if isinstance(name, int): name = 'Unknown AT value: %x' % name attr_desc = describe_attr_value(attr, die, section_offset) if 'DW_OP_fbreg' in attr_desc and current_function and not 'DW_AT_frame_base' in current_function.attributes: postfix = ' [without dw_at_frame_base]' else: postfix = '' self._emitline(' <%x> %-18s: %s%s' % ( attr.offset, name, attr_desc, postfix)) if die.has_children: die_depth += 1 self._emitline() def _dump_debug_line_programs(self): """ Dump the (decoded) line programs from .debug_line The programs are dumped in the order of the CUs they belong to. """ if not self._dwarfinfo.has_debug_info: return self._emitline('Decoded dump of debug contents of section %s:\n' % self._dwarfinfo.debug_line_sec.name) for cu in self._dwarfinfo.iter_CUs(): lineprogram = self._dwarfinfo.line_program_for_CU(cu) cu_filename = bytes2str(lineprogram['file_entry'][0].name) if len(lineprogram['include_directory']) > 0: dir_index = lineprogram['file_entry'][0].dir_index if dir_index > 0: dir = lineprogram['include_directory'][dir_index - 1] else: dir = b'.' cu_filename = '%s/%s' % (bytes2str(dir), cu_filename) self._emitline('CU: %s:' % cu_filename) self._emitline('File name Line number Starting address') # Print each state's file, line and address information. For some # instructions other output is needed to be compatible with # readelf. for entry in lineprogram.get_entries(): state = entry.state if state is None: # Special handling for commands that don't set a new state if entry.command == DW_LNS_set_file: file_entry = lineprogram['file_entry'][entry.args[0] - 1] if file_entry.dir_index == 0: # current directory self._emitline('\n./%s:[++]' % ( bytes2str(file_entry.name))) else: self._emitline('\n%s/%s:' % ( bytes2str(lineprogram['include_directory'][file_entry.dir_index - 1]), bytes2str(file_entry.name))) elif entry.command == DW_LNE_define_file: self._emitline('%s:' % ( bytes2str(lineprogram['include_directory'][entry.args[0].dir_index]))) elif not state.end_sequence: # readelf doesn't print the state after end_sequence # instructions. I think it's a bug but to be compatible # I don't print them too. if lineprogram['version'] < 4: self._emitline('%-35s %11d %18s' % ( bytes2str(lineprogram['file_entry'][state.file - 1].name), state.line, '0' if state.address == 0 else self._format_hex(state.address))) else: self._emitline('%-35s %11d %18s[%d]' % ( bytes2str(lineprogram['file_entry'][state.file - 1].name), state.line, '0' if state.address == 0 else self._format_hex(state.address), state.op_index)) if entry.command == DW_LNS_copy: # Another readelf oddity... self._emitline() def _dump_frames_info(self, section, cfi_entries): """ Dump the raw call frame info in a section. `section` is the Section instance that contains the call frame info while `cfi_entries` must be an iterable that yields the sequence of CIE or FDE instances. """ self._emitline('Contents of the %s section:' % section.name) for entry in cfi_entries: if isinstance(entry, CIE): self._emitline('\n%08x %s %s CIE' % ( entry.offset, self._format_hex(entry['length'], fullhex=True, lead0x=False), self._format_hex(entry['CIE_id'], fieldsize=8, lead0x=False))) self._emitline(' Version: %d' % entry['version']) self._emitline(' Augmentation: "%s"' % bytes2str(entry['augmentation'])) self._emitline(' Code alignment factor: %u' % entry['code_alignment_factor']) self._emitline(' Data alignment factor: %d' % entry['data_alignment_factor']) self._emitline(' Return address column: %d' % entry['return_address_register']) if entry.augmentation_bytes: self._emitline(' Augmentation data: {}'.format(' '.join( '{:02x}'.format(ord(b)) for b in iterbytes(entry.augmentation_bytes) ))) self._emitline() elif isinstance(entry, FDE): self._emitline('\n%08x %s %s FDE cie=%08x pc=%s..%s' % ( entry.offset, self._format_hex(entry['length'], fullhex=True, lead0x=False), self._format_hex(entry['CIE_pointer'], fieldsize=8, lead0x=False), entry.cie.offset, self._format_hex(entry['initial_location'], fullhex=True, lead0x=False), self._format_hex( entry['initial_location'] + entry['address_range'], fullhex=True, lead0x=False))) if entry.augmentation_bytes: self._emitline(' Augmentation data: {}'.format(' '.join( '{:02x}'.format(ord(b)) for b in iterbytes(entry.augmentation_bytes) ))) else: # ZERO terminator assert isinstance(entry, ZERO) self._emitline('\n%08x ZERO terminator' % entry.offset) continue self._emit(describe_CFI_instructions(entry)) self._emitline() def _dump_debug_frames(self): """ Dump the raw frame info from .debug_frame and .eh_frame sections. """ if self._dwarfinfo.has_EH_CFI(): self._dump_frames_info( self._dwarfinfo.eh_frame_sec, self._dwarfinfo.EH_CFI_entries()) self._emitline() if self._dwarfinfo.has_CFI(): self._dump_frames_info( self._dwarfinfo.debug_frame_sec, self._dwarfinfo.CFI_entries()) def _dump_debug_namelut(self, what): """ Dump the debug pubnames section. """ if what == 'pubnames': namelut = self._dwarfinfo.get_pubnames() section = self._dwarfinfo.debug_pubnames_sec else: namelut = self._dwarfinfo.get_pubtypes() section = self._dwarfinfo.debug_pubtypes_sec # readelf prints nothing if the section is not present. if namelut is None or len(namelut) == 0: return self._emitline('Contents of the %s section:' % section.name) self._emitline() cu_headers = namelut.get_cu_headers() # go over CU-by-CU first and item-by-item next. for (cu_hdr, (cu_ofs, items)) in izip(cu_headers, itertools.groupby( namelut.items(), key = lambda x: x[1].cu_ofs)): self._emitline(' Length: %d' % cu_hdr.unit_length) self._emitline(' Version: %d' % cu_hdr.version) self._emitline(' Offset into .debug_info section: 0x%x' % cu_hdr.debug_info_offset) self._emitline(' Size of area in .debug_info section: %d' % cu_hdr.debug_info_length) self._emitline() self._emitline(' Offset Name') for item in items: self._emitline(' %x %s' % (item[1].die_ofs - cu_ofs, item[0])) self._emitline() def _dump_debug_aranges(self): """ Dump the aranges table """ aranges_table = self._dwarfinfo.get_aranges() if aranges_table == None: return # seems redundent, but we need to get the unsorted set of entries to match system readelf unordered_entries = aranges_table._get_entries() if len(unordered_entries) == 0: self._emitline() self._emitline("Section '.debug_aranges' has no debugging data.") return self._emitline('Contents of the %s section:' % self._dwarfinfo.debug_aranges_sec.name) self._emitline() prev_offset = None for entry in unordered_entries: if prev_offset != entry.info_offset: if entry != unordered_entries[0]: self._emitline(' %s %s' % ( self._format_hex(0, fullhex=True, lead0x=False), self._format_hex(0, fullhex=True, lead0x=False))) self._emitline(' Length: %d' % (entry.unit_length)) self._emitline(' Version: %d' % (entry.version)) self._emitline(' Offset into .debug_info: 0x%x' % (entry.info_offset)) self._emitline(' Pointer Size: %d' % (entry.address_size)) self._emitline(' Segment Size: %d' % (entry.segment_size)) self._emitline() self._emitline(' Address Length') self._emitline(' %s %s' % ( self._format_hex(entry.begin_addr, fullhex=True, lead0x=False), self._format_hex(entry.length, fullhex=True, lead0x=False))) prev_offset = entry.info_offset self._emitline(' %s %s' % ( self._format_hex(0, fullhex=True, lead0x=False), self._format_hex(0, fullhex=True, lead0x=False))) def _dump_frames_interp_info(self, section, cfi_entries): """ Dump interpreted (decoded) frame information in a section. `section` is the Section instance that contains the call frame info while `cfi_entries` must be an iterable that yields the sequence of CIE or FDE instances. """ self._emitline('Contents of the %s section:' % section.name) for entry in cfi_entries: if isinstance(entry, CIE): self._emitline('\n%08x %s %s CIE "%s" cf=%d df=%d ra=%d' % ( entry.offset, self._format_hex(entry['length'], fullhex=True, lead0x=False), self._format_hex(entry['CIE_id'], fieldsize=8, lead0x=False), bytes2str(entry['augmentation']), entry['code_alignment_factor'], entry['data_alignment_factor'], entry['return_address_register'])) ra_regnum = entry['return_address_register'] elif isinstance(entry, FDE): self._emitline('\n%08x %s %s FDE cie=%08x pc=%s..%s' % ( entry.offset, self._format_hex(entry['length'], fullhex=True, lead0x=False), self._format_hex(entry['CIE_pointer'], fieldsize=8, lead0x=False), entry.cie.offset, self._format_hex(entry['initial_location'], fullhex=True, lead0x=False), self._format_hex(entry['initial_location'] + entry['address_range'], fullhex=True, lead0x=False))) ra_regnum = entry.cie['return_address_register'] # If the FDE brings adds no unwinding information compared to # its CIE, omit its table. if (len(entry.get_decoded().table) == len(entry.cie.get_decoded().table)): continue else: # ZERO terminator assert isinstance(entry, ZERO) self._emitline('\n%08x ZERO terminator' % entry.offset) continue # Decode the table. decoded_table = entry.get_decoded() if len(decoded_table.table) == 0: continue # Print the heading row for the decoded table self._emit(' LOC') self._emit(' ' if entry.structs.address_size == 4 else ' ') self._emit(' CFA ') # Look at the registers the decoded table describes. # We build reg_order here to match readelf's order. In particular, # registers are sorted by their number, and the register matching # ra_regnum is always listed last with a special heading. decoded_table = entry.get_decoded() reg_order = sorted(ifilter( lambda r: r != ra_regnum, decoded_table.reg_order)) if len(decoded_table.reg_order): # Headings for the registers for regnum in reg_order: self._emit('%-6s' % describe_reg_name(regnum)) self._emitline('ra ') # Now include ra_regnum in reg_order to print its values # similarly to the other registers. reg_order.append(ra_regnum) else: self._emitline() for line in decoded_table.table: self._emit(self._format_hex( line['pc'], fullhex=True, lead0x=False)) if line['cfa'] is not None: s = describe_CFI_CFA_rule(line['cfa']) else: s = 'u' self._emit(' %-9s' % s) for regnum in reg_order: if regnum in line: s = describe_CFI_register_rule(line[regnum]) else: s = 'u' self._emit('%-6s' % s) self._emitline() self._emitline() def _dump_debug_frames_interp(self): """ Dump the interpreted (decoded) frame information from .debug_frame and .eh_framae sections. """ if self._dwarfinfo.has_EH_CFI(): self._dump_frames_interp_info( self._dwarfinfo.eh_frame_sec, self._dwarfinfo.EH_CFI_entries()) self._emitline() if self._dwarfinfo.has_CFI(): self._dump_frames_interp_info( self._dwarfinfo.debug_frame_sec, self._dwarfinfo.CFI_entries()) def _dump_debug_locations(self): """ Dump the location lists from .debug_location section """ def _get_cu_base(cu): top_die = cu.get_top_DIE() attr = top_die.attributes if 'DW_AT_low_pc' in attr: return attr['DW_AT_low_pc'].value elif 'DW_AT_entry_pc' in attr: return attr['DW_AT_entry_pc'].value else: raise ValueError("Can't find the base IP (low_pc) for a CU") di = self._dwarfinfo loc_lists = di.location_lists() if not loc_lists: # No locations section - readelf outputs nothing return loc_lists = list(loc_lists.iter_location_lists()) if len(loc_lists) == 0: # Present but empty locations section - readelf outputs a message self._emitline("\nSection '%s' has no debugging data." % di.debug_loc_sec.name) return # To dump a location list, one needs to know the CU. # Scroll through DIEs once, list the known location list offsets cu_map = dict() # Loc list offset => CU for cu in di.iter_CUs(): for die in cu.iter_DIEs(): for key in die.attributes: attr = die.attributes[key] if (LocationParser.attribute_has_location(attr, cu['version']) and not LocationParser._attribute_has_loc_expr(attr, cu['version'])): cu_map[attr.value] = cu addr_size = di.config.default_address_size # In bytes, 4 or 8 addr_width = addr_size * 2 # In hex digits, 8 or 16 line_template = " %%08x %%0%dx %%0%dx %%s%%s" % (addr_width, addr_width) self._emitline('Contents of the %s section:\n' % di.debug_loc_sec.name) self._emitline(' Offset Begin End Expression') for loc_list in loc_lists: cu = cu_map.get(loc_list[0].entry_offset, False) if not cu: raise ValueError("Location list can't be tracked to a CU") base_ip = _get_cu_base(cu) for entry in loc_list: # TODO: support BaseAddressEntry lines expr = describe_DWARF_expr(entry.loc_expr, cu.structs, cu.cu_offset) postfix = ' (start == end)' if entry.begin_offset == entry.end_offset else '' self._emitline(line_template % ( entry.entry_offset, base_ip + entry.begin_offset, base_ip + entry.end_offset, expr, postfix)) # Pyelftools doesn't store the terminating entry, # but readelf emits its offset, so this should too. last = loc_list[-1] last_len = 2*addr_size if isinstance(last, LocationEntry): last_len += 2 + len(last.loc_expr) self._emitline(" %08x " % (last.entry_offset + last_len)) def _display_arch_specific_arm(self): """ Display the ARM architecture-specific info contained in the file. """ attr_sec = self.elffile.get_section_by_name('.ARM.attributes') for s in attr_sec.iter_subsections(): self._emitline("Attribute Section: %s" % s.header['vendor_name']) for ss in s.iter_subsubsections(): h_val = "" if ss.header.extra is None else " ".join("%d" % x for x in ss.header.extra) self._emitline(describe_attr_tag_arm(ss.header.tag, h_val, None)) for attr in ss.iter_attributes(): self._emit(' ') self._emitline(describe_attr_tag_arm(attr.tag, attr.value, attr.extra)) def _emit(self, s=''): """ Emit an object to output """ self.output.write(str(s)) def _emitline(self, s=''): """ Emit an object to output, followed by a newline """ self.output.write(str(s).rstrip() + '\n') SCRIPT_DESCRIPTION = 'Display information about the contents of ELF format files' VERSION_STRING = '%%(prog)s: based on pyelftools %s' % __version__ def main(stream=None): # parse the command-line arguments and invoke ReadElf argparser = argparse.ArgumentParser( usage='usage: %(prog)s [options] ', description=SCRIPT_DESCRIPTION, add_help=False, # -h is a real option of readelf prog='readelf.py') argparser.add_argument('file', nargs='?', default=None, help='ELF file to parse') argparser.add_argument('-v', '--version', action='version', version=VERSION_STRING) argparser.add_argument('-d', '--dynamic', action='store_true', dest='show_dynamic_tags', help='Display the dynamic section') argparser.add_argument('-H', '--help', action='store_true', dest='help', help='Display this information') argparser.add_argument('-h', '--file-header', action='store_true', dest='show_file_header', help='Display the ELF file header') argparser.add_argument('-l', '--program-headers', '--segments', action='store_true', dest='show_program_header', help='Display the program headers') argparser.add_argument('-S', '--section-headers', '--sections', action='store_true', dest='show_section_header', help="Display the sections' headers") argparser.add_argument('-e', '--headers', action='store_true', dest='show_all_headers', help='Equivalent to: -h -l -S') argparser.add_argument('-s', '--symbols', '--syms', action='store_true', dest='show_symbols', help='Display the symbol table') argparser.add_argument('-n', '--notes', action='store_true', dest='show_notes', help='Display the core notes (if present)') argparser.add_argument('-r', '--relocs', action='store_true', dest='show_relocs', help='Display the relocations (if present)') argparser.add_argument('-au', '--arm-unwind', action='store_true', dest='show_arm_unwind', help='Display the armeabi unwind information (if present)') argparser.add_argument('-x', '--hex-dump', action='store', dest='show_hex_dump', metavar='', help='Dump the contents of section as bytes') argparser.add_argument('-p', '--string-dump', action='store', dest='show_string_dump', metavar='', help='Dump the contents of section as strings') argparser.add_argument('-V', '--version-info', action='store_true', dest='show_version_info', help='Display the version sections (if present)') argparser.add_argument('-A', '--arch-specific', action='store_true', dest='show_arch_specific', help='Display the architecture-specific information (if present)') argparser.add_argument('--debug-dump', action='store', dest='debug_dump_what', metavar='', help=( 'Display the contents of DWARF debug sections. can ' + 'one of {info,decodedline,frames,frames-interp,aranges,pubtypes,pubnames,loc}')) argparser.add_argument('--traceback', action='store_true', dest='show_traceback', help='Dump the Python traceback on ELFError' ' exceptions from elftools') args = argparser.parse_args() if args.help or not args.file: argparser.print_help() sys.exit(0) if args.show_all_headers: do_file_header = do_section_header = do_program_header = True else: do_file_header = args.show_file_header do_section_header = args.show_section_header do_program_header = args.show_program_header with open(args.file, 'rb') as file: try: readelf = ReadElf(file, stream or sys.stdout) if do_file_header: readelf.display_file_header() if do_section_header: readelf.display_section_headers( show_heading=not do_file_header) if do_program_header: readelf.display_program_headers( show_heading=not do_file_header) if args.show_dynamic_tags: readelf.display_dynamic_tags() if args.show_symbols: readelf.display_symbol_tables() if args.show_notes: readelf.display_notes() if args.show_relocs: readelf.display_relocations() if args.show_arm_unwind: readelf.display_arm_unwind() if args.show_version_info: readelf.display_version_info() if args.show_arch_specific: readelf.display_arch_specific() if args.show_hex_dump: readelf.display_hex_dump(args.show_hex_dump) if args.show_string_dump: readelf.display_string_dump(args.show_string_dump) if args.debug_dump_what: readelf.display_debug_dump(args.debug_dump_what) except ELFError as ex: sys.stdout.flush() sys.stderr.write('ELF error: %s\n' % ex) if args.show_traceback: traceback.print_exc() sys.exit(1) def profile_main(): # Run 'main' redirecting its output to readelfout.txt # Saves profiling information in readelf.profile PROFFILE = 'readelf.profile' import cProfile cProfile.run('main(open("readelfout.txt", "w"))', PROFFILE) # Dig in some profiling stats import pstats p = pstats.Stats(PROFFILE) p.sort_stats('cumulative').print_stats(25) #------------------------------------------------------------------------------- if __name__ == '__main__': main() #profile_main()