// // This file is auto-generated. Please don't modify it! // package org.opencv.dnn; import java.util.ArrayList; import java.util.List; import org.opencv.core.Mat; import org.opencv.core.MatOfPoint2f; import org.opencv.dnn.Model; import org.opencv.dnn.Net; import org.opencv.utils.Converters; // C++: class KeypointsModel /** * This class represents high-level API for keypoints models * * KeypointsModel allows to set params for preprocessing input image. * KeypointsModel creates net from file with trained weights and config, * sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint */ public class KeypointsModel extends Model { protected KeypointsModel(long addr) { super(addr); } // internal usage only public static KeypointsModel __fromPtr__(long addr) { return new KeypointsModel(addr); } // // C++: cv::dnn::KeypointsModel::KeypointsModel(String model, String config = "") // /** * Create keypoints model from network represented in one of the supported formats. * An order of {@code model} and {@code config} arguments does not matter. * @param model Binary file contains trained weights. * @param config Text file contains network configuration. */ public KeypointsModel(String model, String config) { super(KeypointsModel_0(model, config)); } /** * Create keypoints model from network represented in one of the supported formats. * An order of {@code model} and {@code config} arguments does not matter. * @param model Binary file contains trained weights. */ public KeypointsModel(String model) { super(KeypointsModel_1(model)); } // // C++: cv::dnn::KeypointsModel::KeypointsModel(Net network) // /** * Create model from deep learning network. * @param network Net object. */ public KeypointsModel(Net network) { super(KeypointsModel_2(network.nativeObj)); } // // C++: vector_Point2f cv::dnn::KeypointsModel::estimate(Mat frame, float thresh = 0.5) // /** * Given the {@code input} frame, create input blob, run net * @param thresh minimum confidence threshold to select a keypoint * @return a vector holding the x and y coordinates of each detected keypoint * * @param frame automatically generated */ public MatOfPoint2f estimate(Mat frame, float thresh) { return MatOfPoint2f.fromNativeAddr(estimate_0(nativeObj, frame.nativeObj, thresh)); } /** * Given the {@code input} frame, create input blob, run net * @return a vector holding the x and y coordinates of each detected keypoint * * @param frame automatically generated */ public MatOfPoint2f estimate(Mat frame) { return MatOfPoint2f.fromNativeAddr(estimate_1(nativeObj, frame.nativeObj)); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: cv::dnn::KeypointsModel::KeypointsModel(String model, String config = "") private static native long KeypointsModel_0(String model, String config); private static native long KeypointsModel_1(String model); // C++: cv::dnn::KeypointsModel::KeypointsModel(Net network) private static native long KeypointsModel_2(long network_nativeObj); // C++: vector_Point2f cv::dnn::KeypointsModel::estimate(Mat frame, float thresh = 0.5) private static native long estimate_0(long nativeObj, long frame_nativeObj, float thresh); private static native long estimate_1(long nativeObj, long frame_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }