// // This file is auto-generated. Please don't modify it! // package org.opencv.dnn; import java.util.ArrayList; import java.util.List; import org.opencv.core.Mat; import org.opencv.core.MatOfByte; import org.opencv.core.MatOfDouble; import org.opencv.core.MatOfFloat; import org.opencv.core.MatOfInt; import org.opencv.core.Scalar; import org.opencv.dnn.DictValue; import org.opencv.dnn.Layer; import org.opencv.dnn.Net; import org.opencv.utils.Converters; // C++: class Net /** * This class allows to create and manipulate comprehensive artificial neural networks. * * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, * and edges specify relationships between layers inputs and outputs. * * Each network layer has unique integer id and unique string name inside its network. * LayerId can store either layer name or layer id. * * This class supports reference counting of its instances, i. e. copies point to the same instance. */ public class Net { protected final long nativeObj; protected Net(long addr) { nativeObj = addr; } public long getNativeObjAddr() { return nativeObj; } // internal usage only public static Net __fromPtr__(long addr) { return new Net(addr); } // // C++: cv::dnn::Net::Net() // public Net() { nativeObj = Net_0(); } // // C++: static Net cv::dnn::Net::readFromModelOptimizer(String xml, String bin) // /** * Create a network from Intel's Model Optimizer intermediate representation (IR). * @param xml XML configuration file with network's topology. * @param bin Binary file with trained weights. * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine * backend. * @return automatically generated */ public static Net readFromModelOptimizer(String xml, String bin) { return new Net(readFromModelOptimizer_0(xml, bin)); } // // C++: static Net cv::dnn::Net::readFromModelOptimizer(vector_uchar bufferModelConfig, vector_uchar bufferWeights) // /** * Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR). * @param bufferModelConfig buffer with model's configuration. * @param bufferWeights buffer with model's trained weights. * @return Net object. */ public static Net readFromModelOptimizer(MatOfByte bufferModelConfig, MatOfByte bufferWeights) { Mat bufferModelConfig_mat = bufferModelConfig; Mat bufferWeights_mat = bufferWeights; return new Net(readFromModelOptimizer_1(bufferModelConfig_mat.nativeObj, bufferWeights_mat.nativeObj)); } // // C++: bool cv::dnn::Net::empty() // /** * Returns true if there are no layers in the network. * @return automatically generated */ public boolean empty() { return empty_0(nativeObj); } // // C++: String cv::dnn::Net::dump() // /** * Dump net to String * @return String with structure, hyperparameters, backend, target and fusion * Call method after setInput(). To see correct backend, target and fusion run after forward(). */ public String dump() { return dump_0(nativeObj); } // // C++: void cv::dnn::Net::dumpToFile(String path) // /** * Dump net structure, hyperparameters, backend, target and fusion to dot file * @param path path to output file with .dot extension * SEE: dump() */ public void dumpToFile(String path) { dumpToFile_0(nativeObj, path); } // // C++: int cv::dnn::Net::getLayerId(String layer) // /** * Converts string name of the layer to the integer identifier. * @return id of the layer, or -1 if the layer wasn't found. * @param layer automatically generated */ public int getLayerId(String layer) { return getLayerId_0(nativeObj, layer); } // // C++: vector_String cv::dnn::Net::getLayerNames() // public List getLayerNames() { return getLayerNames_0(nativeObj); } // // C++: Ptr_Layer cv::dnn::Net::getLayer(LayerId layerId) // /** * Returns pointer to layer with specified id or name which the network use. * @param layerId automatically generated * @return automatically generated */ public Layer getLayer(DictValue layerId) { return Layer.__fromPtr__(getLayer_0(nativeObj, layerId.getNativeObjAddr())); } // // C++: void cv::dnn::Net::connect(String outPin, String inpPin) // /** * Connects output of the first layer to input of the second layer. * @param outPin descriptor of the first layer output. * @param inpPin descriptor of the second layer input. * * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>: * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer. * If this part is empty then the network input pseudo layer will be used; * - the second optional part of the template <DFN>input_number</DFN> * is either number of the layer input, either label one. * If this part is omitted then the first layer input will be used. * * SEE: setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() */ public void connect(String outPin, String inpPin) { connect_0(nativeObj, outPin, inpPin); } // // C++: void cv::dnn::Net::setInputsNames(vector_String inputBlobNames) // /** * Sets outputs names of the network input pseudo layer. * * Each net always has special own the network input pseudo layer with id=0. * This layer stores the user blobs only and don't make any computations. * In fact, this layer provides the only way to pass user data into the network. * As any other layer, this layer can label its outputs and this function provides an easy way to do this. * @param inputBlobNames automatically generated */ public void setInputsNames(List inputBlobNames) { setInputsNames_0(nativeObj, inputBlobNames); } // // C++: void cv::dnn::Net::setInputShape(String inputName, MatShape shape) // /** * Specify shape of network input. * @param inputName automatically generated * @param shape automatically generated */ public void setInputShape(String inputName, MatOfInt shape) { Mat shape_mat = shape; setInputShape_0(nativeObj, inputName, shape_mat.nativeObj); } // // C++: Mat cv::dnn::Net::forward(String outputName = String()) // /** * Runs forward pass to compute output of layer with name {@code outputName}. * @param outputName name for layer which output is needed to get * @return blob for first output of specified layer. * By default runs forward pass for the whole network. */ public Mat forward(String outputName) { return new Mat(forward_0(nativeObj, outputName)); } /** * Runs forward pass to compute output of layer with name {@code outputName}. * @return blob for first output of specified layer. * By default runs forward pass for the whole network. */ public Mat forward() { return new Mat(forward_1(nativeObj)); } // // C++: AsyncArray cv::dnn::Net::forwardAsync(String outputName = String()) // // Return type 'AsyncArray' is not supported, skipping the function // // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, String outputName = String()) // /** * Runs forward pass to compute output of layer with name {@code outputName}. * @param outputBlobs contains all output blobs for specified layer. * @param outputName name for layer which output is needed to get * If {@code outputName} is empty, runs forward pass for the whole network. */ public void forward(List outputBlobs, String outputName) { Mat outputBlobs_mat = new Mat(); forward_2(nativeObj, outputBlobs_mat.nativeObj, outputName); Converters.Mat_to_vector_Mat(outputBlobs_mat, outputBlobs); outputBlobs_mat.release(); } /** * Runs forward pass to compute output of layer with name {@code outputName}. * @param outputBlobs contains all output blobs for specified layer. * If {@code outputName} is empty, runs forward pass for the whole network. */ public void forward(List outputBlobs) { Mat outputBlobs_mat = new Mat(); forward_3(nativeObj, outputBlobs_mat.nativeObj); Converters.Mat_to_vector_Mat(outputBlobs_mat, outputBlobs); outputBlobs_mat.release(); } // // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, vector_String outBlobNames) // /** * Runs forward pass to compute outputs of layers listed in {@code outBlobNames}. * @param outputBlobs contains blobs for first outputs of specified layers. * @param outBlobNames names for layers which outputs are needed to get */ public void forward(List outputBlobs, List outBlobNames) { Mat outputBlobs_mat = new Mat(); forward_4(nativeObj, outputBlobs_mat.nativeObj, outBlobNames); Converters.Mat_to_vector_Mat(outputBlobs_mat, outputBlobs); outputBlobs_mat.release(); } // // C++: void cv::dnn::Net::forward(vector_vector_Mat& outputBlobs, vector_String outBlobNames) // // Unknown type 'vector_vector_Mat' (O), skipping the function // // C++: Net cv::dnn::Net::quantize(vector_Mat calibData, int inputsDtype, int outputsDtype) // /** * Returns a quantized Net from a floating-point Net. * @param calibData Calibration data to compute the quantization parameters. * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S. * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S. * @return automatically generated */ public Net quantize(List calibData, int inputsDtype, int outputsDtype) { Mat calibData_mat = Converters.vector_Mat_to_Mat(calibData); return new Net(quantize_0(nativeObj, calibData_mat.nativeObj, inputsDtype, outputsDtype)); } // // C++: void cv::dnn::Net::getInputDetails(vector_float& scales, vector_int& zeropoints) // /** * Returns input scale and zeropoint for a quantized Net. * @param scales output parameter for returning input scales. * @param zeropoints output parameter for returning input zeropoints. */ public void getInputDetails(MatOfFloat scales, MatOfInt zeropoints) { Mat scales_mat = scales; Mat zeropoints_mat = zeropoints; getInputDetails_0(nativeObj, scales_mat.nativeObj, zeropoints_mat.nativeObj); } // // C++: void cv::dnn::Net::getOutputDetails(vector_float& scales, vector_int& zeropoints) // /** * Returns output scale and zeropoint for a quantized Net. * @param scales output parameter for returning output scales. * @param zeropoints output parameter for returning output zeropoints. */ public void getOutputDetails(MatOfFloat scales, MatOfInt zeropoints) { Mat scales_mat = scales; Mat zeropoints_mat = zeropoints; getOutputDetails_0(nativeObj, scales_mat.nativeObj, zeropoints_mat.nativeObj); } // // C++: void cv::dnn::Net::setHalideScheduler(String scheduler) // /** * Compile Halide layers. * @param scheduler Path to YAML file with scheduling directives. * SEE: setPreferableBackend * * Schedule layers that support Halide backend. Then compile them for * specific target. For layers that not represented in scheduling file * or if no manual scheduling used at all, automatic scheduling will be applied. */ public void setHalideScheduler(String scheduler) { setHalideScheduler_0(nativeObj, scheduler); } // // C++: void cv::dnn::Net::setPreferableBackend(int backendId) // /** * Ask network to use specific computation backend where it supported. * @param backendId backend identifier. * SEE: Backend * * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV. */ public void setPreferableBackend(int backendId) { setPreferableBackend_0(nativeObj, backendId); } // // C++: void cv::dnn::Net::setPreferableTarget(int targetId) // /** * Ask network to make computations on specific target device. * @param targetId target identifier. * SEE: Target * * List of supported combinations backend / target: * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA | * |------------------------|--------------------|------------------------------|--------------------|-------------------| * | DNN_TARGET_CPU | + | + | + | | * | DNN_TARGET_OPENCL | + | + | + | | * | DNN_TARGET_OPENCL_FP16 | + | + | | | * | DNN_TARGET_MYRIAD | | + | | | * | DNN_TARGET_FPGA | | + | | | * | DNN_TARGET_CUDA | | | | + | * | DNN_TARGET_CUDA_FP16 | | | | + | * | DNN_TARGET_HDDL | | + | | | */ public void setPreferableTarget(int targetId) { setPreferableTarget_0(nativeObj, targetId); } // // C++: void cv::dnn::Net::setInput(Mat blob, String name = "", double scalefactor = 1.0, Scalar mean = Scalar()) // /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @param name A name of input layer. * @param scalefactor An optional normalization scale. * @param mean An optional mean subtraction values. * SEE: connect(String, String) to know format of the descriptor. * * If scale or mean values are specified, a final input blob is computed * as: * \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\) */ public void setInput(Mat blob, String name, double scalefactor, Scalar mean) { setInput_0(nativeObj, blob.nativeObj, name, scalefactor, mean.val[0], mean.val[1], mean.val[2], mean.val[3]); } /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @param name A name of input layer. * @param scalefactor An optional normalization scale. * SEE: connect(String, String) to know format of the descriptor. * * If scale or mean values are specified, a final input blob is computed * as: * \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\) */ public void setInput(Mat blob, String name, double scalefactor) { setInput_1(nativeObj, blob.nativeObj, name, scalefactor); } /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * @param name A name of input layer. * SEE: connect(String, String) to know format of the descriptor. * * If scale or mean values are specified, a final input blob is computed * as: * \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\) */ public void setInput(Mat blob, String name) { setInput_2(nativeObj, blob.nativeObj, name); } /** * Sets the new input value for the network * @param blob A new blob. Should have CV_32F or CV_8U depth. * SEE: connect(String, String) to know format of the descriptor. * * If scale or mean values are specified, a final input blob is computed * as: * \(input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\) */ public void setInput(Mat blob) { setInput_3(nativeObj, blob.nativeObj); } // // C++: void cv::dnn::Net::setParam(LayerId layer, int numParam, Mat blob) // /** * Sets the new value for the learned param of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * @param blob the new value. * SEE: Layer::blobs * Note: If shape of the new blob differs from the previous shape, * then the following forward pass may fail. */ public void setParam(DictValue layer, int numParam, Mat blob) { setParam_0(nativeObj, layer.getNativeObjAddr(), numParam, blob.nativeObj); } // // C++: Mat cv::dnn::Net::getParam(LayerId layer, int numParam = 0) // /** * Returns parameter blob of the layer. * @param layer name or id of the layer. * @param numParam index of the layer parameter in the Layer::blobs array. * SEE: Layer::blobs * @return automatically generated */ public Mat getParam(DictValue layer, int numParam) { return new Mat(getParam_0(nativeObj, layer.getNativeObjAddr(), numParam)); } /** * Returns parameter blob of the layer. * @param layer name or id of the layer. * SEE: Layer::blobs * @return automatically generated */ public Mat getParam(DictValue layer) { return new Mat(getParam_1(nativeObj, layer.getNativeObjAddr())); } // // C++: vector_int cv::dnn::Net::getUnconnectedOutLayers() // /** * Returns indexes of layers with unconnected outputs. * @return automatically generated */ public MatOfInt getUnconnectedOutLayers() { return MatOfInt.fromNativeAddr(getUnconnectedOutLayers_0(nativeObj)); } // // C++: vector_String cv::dnn::Net::getUnconnectedOutLayersNames() // /** * Returns names of layers with unconnected outputs. * @return automatically generated */ public List getUnconnectedOutLayersNames() { return getUnconnectedOutLayersNames_0(nativeObj); } // // C++: void cv::dnn::Net::getLayersShapes(vector_MatShape netInputShapes, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes) // // Unknown type 'vector_vector_MatShape' (O), skipping the function // // C++: void cv::dnn::Net::getLayersShapes(MatShape netInputShape, vector_int& layersIds, vector_vector_MatShape& inLayersShapes, vector_vector_MatShape& outLayersShapes) // // Unknown type 'vector_vector_MatShape' (O), skipping the function // // C++: int64 cv::dnn::Net::getFLOPS(vector_MatShape netInputShapes) // /** * Computes FLOP for whole loaded model with specified input shapes. * @param netInputShapes vector of shapes for all net inputs. * @return computed FLOP. */ public long getFLOPS(List netInputShapes) { return getFLOPS_0(nativeObj, netInputShapes); } // // C++: int64 cv::dnn::Net::getFLOPS(MatShape netInputShape) // public long getFLOPS(MatOfInt netInputShape) { Mat netInputShape_mat = netInputShape; return getFLOPS_1(nativeObj, netInputShape_mat.nativeObj); } // // C++: int64 cv::dnn::Net::getFLOPS(int layerId, vector_MatShape netInputShapes) // public long getFLOPS(int layerId, List netInputShapes) { return getFLOPS_2(nativeObj, layerId, netInputShapes); } // // C++: int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape) // public long getFLOPS(int layerId, MatOfInt netInputShape) { Mat netInputShape_mat = netInputShape; return getFLOPS_3(nativeObj, layerId, netInputShape_mat.nativeObj); } // // C++: void cv::dnn::Net::getLayerTypes(vector_String& layersTypes) // /** * Returns list of types for layer used in model. * @param layersTypes output parameter for returning types. */ public void getLayerTypes(List layersTypes) { getLayerTypes_0(nativeObj, layersTypes); } // // C++: int cv::dnn::Net::getLayersCount(String layerType) // /** * Returns count of layers of specified type. * @param layerType type. * @return count of layers */ public int getLayersCount(String layerType) { return getLayersCount_0(nativeObj, layerType); } // // C++: void cv::dnn::Net::getMemoryConsumption(MatShape netInputShape, size_t& weights, size_t& blobs) // public void getMemoryConsumption(MatOfInt netInputShape, long[] weights, long[] blobs) { Mat netInputShape_mat = netInputShape; double[] weights_out = new double[1]; double[] blobs_out = new double[1]; getMemoryConsumption_0(nativeObj, netInputShape_mat.nativeObj, weights_out, blobs_out); if(weights!=null) weights[0] = (long)weights_out[0]; if(blobs!=null) blobs[0] = (long)blobs_out[0]; } // // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, vector_MatShape netInputShapes, size_t& weights, size_t& blobs) // public void getMemoryConsumption(int layerId, List netInputShapes, long[] weights, long[] blobs) { double[] weights_out = new double[1]; double[] blobs_out = new double[1]; getMemoryConsumption_1(nativeObj, layerId, netInputShapes, weights_out, blobs_out); if(weights!=null) weights[0] = (long)weights_out[0]; if(blobs!=null) blobs[0] = (long)blobs_out[0]; } // // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, MatShape netInputShape, size_t& weights, size_t& blobs) // public void getMemoryConsumption(int layerId, MatOfInt netInputShape, long[] weights, long[] blobs) { Mat netInputShape_mat = netInputShape; double[] weights_out = new double[1]; double[] blobs_out = new double[1]; getMemoryConsumption_2(nativeObj, layerId, netInputShape_mat.nativeObj, weights_out, blobs_out); if(weights!=null) weights[0] = (long)weights_out[0]; if(blobs!=null) blobs[0] = (long)blobs_out[0]; } // // C++: void cv::dnn::Net::enableFusion(bool fusion) // /** * Enables or disables layer fusion in the network. * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default. */ public void enableFusion(boolean fusion) { enableFusion_0(nativeObj, fusion); } // // C++: int64 cv::dnn::Net::getPerfProfile(vector_double& timings) // /** * Returns overall time for inference and timings (in ticks) for layers. * * Indexes in returned vector correspond to layers ids. Some layers can be fused with others, * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only. * * @param timings vector for tick timings for all layers. * @return overall ticks for model inference. */ public long getPerfProfile(MatOfDouble timings) { Mat timings_mat = timings; return getPerfProfile_0(nativeObj, timings_mat.nativeObj); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: cv::dnn::Net::Net() private static native long Net_0(); // C++: static Net cv::dnn::Net::readFromModelOptimizer(String xml, String bin) private static native long readFromModelOptimizer_0(String xml, String bin); // C++: static Net cv::dnn::Net::readFromModelOptimizer(vector_uchar bufferModelConfig, vector_uchar bufferWeights) private static native long readFromModelOptimizer_1(long bufferModelConfig_mat_nativeObj, long bufferWeights_mat_nativeObj); // C++: bool cv::dnn::Net::empty() private static native boolean empty_0(long nativeObj); // C++: String cv::dnn::Net::dump() private static native String dump_0(long nativeObj); // C++: void cv::dnn::Net::dumpToFile(String path) private static native void dumpToFile_0(long nativeObj, String path); // C++: int cv::dnn::Net::getLayerId(String layer) private static native int getLayerId_0(long nativeObj, String layer); // C++: vector_String cv::dnn::Net::getLayerNames() private static native List getLayerNames_0(long nativeObj); // C++: Ptr_Layer cv::dnn::Net::getLayer(LayerId layerId) private static native long getLayer_0(long nativeObj, long layerId_nativeObj); // C++: void cv::dnn::Net::connect(String outPin, String inpPin) private static native void connect_0(long nativeObj, String outPin, String inpPin); // C++: void cv::dnn::Net::setInputsNames(vector_String inputBlobNames) private static native void setInputsNames_0(long nativeObj, List inputBlobNames); // C++: void cv::dnn::Net::setInputShape(String inputName, MatShape shape) private static native void setInputShape_0(long nativeObj, String inputName, long shape_mat_nativeObj); // C++: Mat cv::dnn::Net::forward(String outputName = String()) private static native long forward_0(long nativeObj, String outputName); private static native long forward_1(long nativeObj); // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, String outputName = String()) private static native void forward_2(long nativeObj, long outputBlobs_mat_nativeObj, String outputName); private static native void forward_3(long nativeObj, long outputBlobs_mat_nativeObj); // C++: void cv::dnn::Net::forward(vector_Mat& outputBlobs, vector_String outBlobNames) private static native void forward_4(long nativeObj, long outputBlobs_mat_nativeObj, List outBlobNames); // C++: Net cv::dnn::Net::quantize(vector_Mat calibData, int inputsDtype, int outputsDtype) private static native long quantize_0(long nativeObj, long calibData_mat_nativeObj, int inputsDtype, int outputsDtype); // C++: void cv::dnn::Net::getInputDetails(vector_float& scales, vector_int& zeropoints) private static native void getInputDetails_0(long nativeObj, long scales_mat_nativeObj, long zeropoints_mat_nativeObj); // C++: void cv::dnn::Net::getOutputDetails(vector_float& scales, vector_int& zeropoints) private static native void getOutputDetails_0(long nativeObj, long scales_mat_nativeObj, long zeropoints_mat_nativeObj); // C++: void cv::dnn::Net::setHalideScheduler(String scheduler) private static native void setHalideScheduler_0(long nativeObj, String scheduler); // C++: void cv::dnn::Net::setPreferableBackend(int backendId) private static native void setPreferableBackend_0(long nativeObj, int backendId); // C++: void cv::dnn::Net::setPreferableTarget(int targetId) private static native void setPreferableTarget_0(long nativeObj, int targetId); // C++: void cv::dnn::Net::setInput(Mat blob, String name = "", double scalefactor = 1.0, Scalar mean = Scalar()) private static native void setInput_0(long nativeObj, long blob_nativeObj, String name, double scalefactor, double mean_val0, double mean_val1, double mean_val2, double mean_val3); private static native void setInput_1(long nativeObj, long blob_nativeObj, String name, double scalefactor); private static native void setInput_2(long nativeObj, long blob_nativeObj, String name); private static native void setInput_3(long nativeObj, long blob_nativeObj); // C++: void cv::dnn::Net::setParam(LayerId layer, int numParam, Mat blob) private static native void setParam_0(long nativeObj, long layer_nativeObj, int numParam, long blob_nativeObj); // C++: Mat cv::dnn::Net::getParam(LayerId layer, int numParam = 0) private static native long getParam_0(long nativeObj, long layer_nativeObj, int numParam); private static native long getParam_1(long nativeObj, long layer_nativeObj); // C++: vector_int cv::dnn::Net::getUnconnectedOutLayers() private static native long getUnconnectedOutLayers_0(long nativeObj); // C++: vector_String cv::dnn::Net::getUnconnectedOutLayersNames() private static native List getUnconnectedOutLayersNames_0(long nativeObj); // C++: int64 cv::dnn::Net::getFLOPS(vector_MatShape netInputShapes) private static native long getFLOPS_0(long nativeObj, List netInputShapes); // C++: int64 cv::dnn::Net::getFLOPS(MatShape netInputShape) private static native long getFLOPS_1(long nativeObj, long netInputShape_mat_nativeObj); // C++: int64 cv::dnn::Net::getFLOPS(int layerId, vector_MatShape netInputShapes) private static native long getFLOPS_2(long nativeObj, int layerId, List netInputShapes); // C++: int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape) private static native long getFLOPS_3(long nativeObj, int layerId, long netInputShape_mat_nativeObj); // C++: void cv::dnn::Net::getLayerTypes(vector_String& layersTypes) private static native void getLayerTypes_0(long nativeObj, List layersTypes); // C++: int cv::dnn::Net::getLayersCount(String layerType) private static native int getLayersCount_0(long nativeObj, String layerType); // C++: void cv::dnn::Net::getMemoryConsumption(MatShape netInputShape, size_t& weights, size_t& blobs) private static native void getMemoryConsumption_0(long nativeObj, long netInputShape_mat_nativeObj, double[] weights_out, double[] blobs_out); // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, vector_MatShape netInputShapes, size_t& weights, size_t& blobs) private static native void getMemoryConsumption_1(long nativeObj, int layerId, List netInputShapes, double[] weights_out, double[] blobs_out); // C++: void cv::dnn::Net::getMemoryConsumption(int layerId, MatShape netInputShape, size_t& weights, size_t& blobs) private static native void getMemoryConsumption_2(long nativeObj, int layerId, long netInputShape_mat_nativeObj, double[] weights_out, double[] blobs_out); // C++: void cv::dnn::Net::enableFusion(bool fusion) private static native void enableFusion_0(long nativeObj, boolean fusion); // C++: int64 cv::dnn::Net::getPerfProfile(vector_double& timings) private static native long getPerfProfile_0(long nativeObj, long timings_mat_nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }