// // This file is auto-generated. Please don't modify it! // package org.opencv.face; import org.opencv.face.BasicFaceRecognizer; import org.opencv.face.FisherFaceRecognizer; // C++: class FisherFaceRecognizer public class FisherFaceRecognizer extends BasicFaceRecognizer { protected FisherFaceRecognizer(long addr) { super(addr); } // internal usage only public static FisherFaceRecognizer __fromPtr__(long addr) { return new FisherFaceRecognizer(addr); } // // C++: static Ptr_FisherFaceRecognizer cv::face::FisherFaceRecognizer::create(int num_components = 0, double threshold = DBL_MAX) // /** * @param num_components The number of components (read: Fisherfaces) kept for this Linear * Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that * means the number of your classes c (read: subjects, persons you want to recognize). If you leave * this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the * correct number (c-1) automatically. * @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor * is larger than the threshold, this method returns -1. * * ### Notes: * * * * ### Model internal data: * * * @return automatically generated */ public static FisherFaceRecognizer create(int num_components, double threshold) { return FisherFaceRecognizer.__fromPtr__(create_0(num_components, threshold)); } /** * @param num_components The number of components (read: Fisherfaces) kept for this Linear * Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that * means the number of your classes c (read: subjects, persons you want to recognize). If you leave * this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the * correct number (c-1) automatically. * is larger than the threshold, this method returns -1. * * ### Notes: * * * * ### Model internal data: * * * @return automatically generated */ public static FisherFaceRecognizer create(int num_components) { return FisherFaceRecognizer.__fromPtr__(create_1(num_components)); } /** * Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that * means the number of your classes c (read: subjects, persons you want to recognize). If you leave * this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the * correct number (c-1) automatically. * is larger than the threshold, this method returns -1. * * ### Notes: * * * * ### Model internal data: * * * @return automatically generated */ public static FisherFaceRecognizer create() { return FisherFaceRecognizer.__fromPtr__(create_2()); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: static Ptr_FisherFaceRecognizer cv::face::FisherFaceRecognizer::create(int num_components = 0, double threshold = DBL_MAX) private static native long create_0(int num_components, double threshold); private static native long create_1(int num_components); private static native long create_2(); // native support for java finalize() private static native void delete(long nativeObj); }