// // This file is auto-generated. Please don't modify it! // package org.opencv.video; import java.util.ArrayList; import java.util.List; import org.opencv.core.Mat; import org.opencv.core.MatOfByte; import org.opencv.core.MatOfFloat; import org.opencv.core.MatOfPoint2f; import org.opencv.core.Rect; import org.opencv.core.RotatedRect; import org.opencv.core.Size; import org.opencv.core.TermCriteria; import org.opencv.utils.Converters; import org.opencv.video.BackgroundSubtractorKNN; import org.opencv.video.BackgroundSubtractorMOG2; // C++: class Video public class Video { private static final int CV_LKFLOW_INITIAL_GUESSES = 4, CV_LKFLOW_GET_MIN_EIGENVALS = 8; // C++: enum public static final int OPTFLOW_USE_INITIAL_FLOW = 4, OPTFLOW_LK_GET_MIN_EIGENVALS = 8, OPTFLOW_FARNEBACK_GAUSSIAN = 256, MOTION_TRANSLATION = 0, MOTION_EUCLIDEAN = 1, MOTION_AFFINE = 2, MOTION_HOMOGRAPHY = 3; // C++: enum MODE (cv.detail.TrackerSamplerCSC.MODE) public static final int TrackerSamplerCSC_MODE_INIT_POS = 1, TrackerSamplerCSC_MODE_INIT_NEG = 2, TrackerSamplerCSC_MODE_TRACK_POS = 3, TrackerSamplerCSC_MODE_TRACK_NEG = 4, TrackerSamplerCSC_MODE_DETECT = 5; // // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria) // /** * Finds an object center, size, and orientation. * * @param probImage Back projection of the object histogram. See calcBackProject. * @param window Initial search window. * @param criteria Stop criteria for the underlying meanShift. * returns * (in old interfaces) Number of iterations CAMSHIFT took to converge * The function implements the CAMSHIFT object tracking algorithm CITE: Bradski98 . First, it finds an * object center using meanShift and then adjusts the window size and finds the optimal rotation. The * function returns the rotated rectangle structure that includes the object position, size, and * orientation. The next position of the search window can be obtained with RotatedRect::boundingRect() * * See the OpenCV sample camshiftdemo.c that tracks colored objects. * * Note: * * @return automatically generated */ public static RotatedRect CamShift(Mat probImage, Rect window, TermCriteria criteria) { double[] window_out = new double[4]; RotatedRect retVal = new RotatedRect(CamShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon)); if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } return retVal; } // // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria) // /** * Finds an object on a back projection image. * * @param probImage Back projection of the object histogram. See calcBackProject for details. * @param window Initial search window. * @param criteria Stop criteria for the iterative search algorithm. * returns * : Number of iterations CAMSHIFT took to converge. * The function implements the iterative object search algorithm. It takes the input back projection of * an object and the initial position. The mass center in window of the back projection image is * computed and the search window center shifts to the mass center. The procedure is repeated until the * specified number of iterations criteria.maxCount is done or until the window center shifts by less * than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search * window size or orientation do not change during the search. You can simply pass the output of * calcBackProject to this function. But better results can be obtained if you pre-filter the back * projection and remove the noise. For example, you can do this by retrieving connected components * with findContours , throwing away contours with small area ( contourArea ), and rendering the * remaining contours with drawContours. * @return automatically generated */ public static int meanShift(Mat probImage, Rect window, TermCriteria criteria) { double[] window_out = new double[4]; int retVal = meanShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon); if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } return retVal; } // // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) // /** * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. * * @param img 8-bit input image. * @param pyramid output pyramid. * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. * @param maxLevel 0-based maximal pyramid level number. * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. * @param pyrBorder the border mode for pyramid layers. * @param derivBorder the border mode for gradients. * @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false * to force data copying. * @return number of levels in constructed pyramid. Can be less than maxLevel. */ public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage) { Mat pyramid_mat = new Mat(); int retVal = buildOpticalFlowPyramid_0(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage); Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); pyramid_mat.release(); return retVal; } /** * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. * * @param img 8-bit input image. * @param pyramid output pyramid. * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. * @param maxLevel 0-based maximal pyramid level number. * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. * @param pyrBorder the border mode for pyramid layers. * @param derivBorder the border mode for gradients. * to force data copying. * @return number of levels in constructed pyramid. Can be less than maxLevel. */ public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder) { Mat pyramid_mat = new Mat(); int retVal = buildOpticalFlowPyramid_1(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder); Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); pyramid_mat.release(); return retVal; } /** * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. * * @param img 8-bit input image. * @param pyramid output pyramid. * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. * @param maxLevel 0-based maximal pyramid level number. * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. * @param pyrBorder the border mode for pyramid layers. * to force data copying. * @return number of levels in constructed pyramid. Can be less than maxLevel. */ public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder) { Mat pyramid_mat = new Mat(); int retVal = buildOpticalFlowPyramid_2(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder); Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); pyramid_mat.release(); return retVal; } /** * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. * * @param img 8-bit input image. * @param pyramid output pyramid. * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. * @param maxLevel 0-based maximal pyramid level number. * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. * to force data copying. * @return number of levels in constructed pyramid. Can be less than maxLevel. */ public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel, boolean withDerivatives) { Mat pyramid_mat = new Mat(); int retVal = buildOpticalFlowPyramid_3(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives); Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); pyramid_mat.release(); return retVal; } /** * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. * * @param img 8-bit input image. * @param pyramid output pyramid. * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. * @param maxLevel 0-based maximal pyramid level number. * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. * to force data copying. * @return number of levels in constructed pyramid. Can be less than maxLevel. */ public static int buildOpticalFlowPyramid(Mat img, List pyramid, Size winSize, int maxLevel) { Mat pyramid_mat = new Mat(); int retVal = buildOpticalFlowPyramid_4(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel); Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); pyramid_mat.release(); return retVal; } // // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) // /** * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with * pyramids. * * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. * @param nextImg second input image or pyramid of the same size and the same type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be * single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) * containing the calculated new positions of input features in the second image; when * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if * the flow for the corresponding features has been found, otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an error for the * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't * found then the error is not defined (use the status parameter to find such cases). * @param winSize size of the search window at each pyramid level. * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then * algorithm will use as many levels as pyramids have but no more than maxLevel. * @param criteria parameter, specifying the termination criteria of the iterative search algorithm * (after the specified maximum number of iterations criteria.maxCount or when the search window * moves by less than criteria.epsilon. * @param flags operation flags: *
    *
  • * OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is * not set, then prevPts is copied to nextPts and is considered the initial estimate. *
  • *
  • * OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see * minEigThreshold description); if the flag is not set, then L1 distance between patches * around the original and a moved point, divided by number of pixels in a window, is used as a * error measure. * @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a * performance boost. *
  • *
* * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See * CITE: Bouguet00 . The function is parallelized with the TBB library. * * Note: * *
    *
  • * An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/cpp/lkdemo.cpp *
  • *
  • * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/python/lk_track.py *
  • *
  • * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at * opencv_source_code/samples/python/lk_homography.py *
  • *
*/ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_0(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags, minEigThreshold); } /** * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with * pyramids. * * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. * @param nextImg second input image or pyramid of the same size and the same type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be * single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) * containing the calculated new positions of input features in the second image; when * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if * the flow for the corresponding features has been found, otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an error for the * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't * found then the error is not defined (use the status parameter to find such cases). * @param winSize size of the search window at each pyramid level. * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then * algorithm will use as many levels as pyramids have but no more than maxLevel. * @param criteria parameter, specifying the termination criteria of the iterative search algorithm * (after the specified maximum number of iterations criteria.maxCount or when the search window * moves by less than criteria.epsilon. * @param flags operation flags: *
    *
  • * OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is * not set, then prevPts is copied to nextPts and is considered the initial estimate. *
  • *
  • * OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see * minEigThreshold description); if the flag is not set, then L1 distance between patches * around the original and a moved point, divided by number of pixels in a window, is used as a * error measure. * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a * performance boost. *
  • *
* * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See * CITE: Bouguet00 . The function is parallelized with the TBB library. * * Note: * *
    *
  • * An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/cpp/lkdemo.cpp *
  • *
  • * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/python/lk_track.py *
  • *
  • * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at * opencv_source_code/samples/python/lk_homography.py *
  • *
*/ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_1(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags); } /** * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with * pyramids. * * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. * @param nextImg second input image or pyramid of the same size and the same type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be * single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) * containing the calculated new positions of input features in the second image; when * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if * the flow for the corresponding features has been found, otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an error for the * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't * found then the error is not defined (use the status parameter to find such cases). * @param winSize size of the search window at each pyramid level. * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then * algorithm will use as many levels as pyramids have but no more than maxLevel. * @param criteria parameter, specifying the termination criteria of the iterative search algorithm * (after the specified maximum number of iterations criteria.maxCount or when the search window * moves by less than criteria.epsilon. *
    *
  • * OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is * not set, then prevPts is copied to nextPts and is considered the initial estimate. *
  • *
  • * OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see * minEigThreshold description); if the flag is not set, then L1 distance between patches * around the original and a moved point, divided by number of pixels in a window, is used as a * error measure. * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a * performance boost. *
  • *
* * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See * CITE: Bouguet00 . The function is parallelized with the TBB library. * * Note: * *
    *
  • * An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/cpp/lkdemo.cpp *
  • *
  • * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/python/lk_track.py *
  • *
  • * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at * opencv_source_code/samples/python/lk_homography.py *
  • *
*/ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_2(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon); } /** * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with * pyramids. * * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. * @param nextImg second input image or pyramid of the same size and the same type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be * single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) * containing the calculated new positions of input features in the second image; when * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if * the flow for the corresponding features has been found, otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an error for the * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't * found then the error is not defined (use the status parameter to find such cases). * @param winSize size of the search window at each pyramid level. * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then * algorithm will use as many levels as pyramids have but no more than maxLevel. * (after the specified maximum number of iterations criteria.maxCount or when the search window * moves by less than criteria.epsilon. *
    *
  • * OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is * not set, then prevPts is copied to nextPts and is considered the initial estimate. *
  • *
  • * OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see * minEigThreshold description); if the flag is not set, then L1 distance between patches * around the original and a moved point, divided by number of pixels in a window, is used as a * error measure. * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a * performance boost. *
  • *
* * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See * CITE: Bouguet00 . The function is parallelized with the TBB library. * * Note: * *
    *
  • * An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/cpp/lkdemo.cpp *
  • *
  • * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/python/lk_track.py *
  • *
  • * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at * opencv_source_code/samples/python/lk_homography.py *
  • *
*/ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_3(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel); } /** * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with * pyramids. * * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. * @param nextImg second input image or pyramid of the same size and the same type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be * single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) * containing the calculated new positions of input features in the second image; when * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if * the flow for the corresponding features has been found, otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an error for the * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't * found then the error is not defined (use the status parameter to find such cases). * @param winSize size of the search window at each pyramid level. * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then * algorithm will use as many levels as pyramids have but no more than maxLevel. * (after the specified maximum number of iterations criteria.maxCount or when the search window * moves by less than criteria.epsilon. *
    *
  • * OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is * not set, then prevPts is copied to nextPts and is considered the initial estimate. *
  • *
  • * OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see * minEigThreshold description); if the flag is not set, then L1 distance between patches * around the original and a moved point, divided by number of pixels in a window, is used as a * error measure. * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a * performance boost. *
  • *
* * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See * CITE: Bouguet00 . The function is parallelized with the TBB library. * * Note: * *
    *
  • * An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/cpp/lkdemo.cpp *
  • *
  • * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/python/lk_track.py *
  • *
  • * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at * opencv_source_code/samples/python/lk_homography.py *
  • *
*/ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_4(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height); } /** * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with * pyramids. * * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. * @param nextImg second input image or pyramid of the same size and the same type as prevImg. * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be * single-precision floating-point numbers. * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) * containing the calculated new positions of input features in the second image; when * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if * the flow for the corresponding features has been found, otherwise, it is set to 0. * @param err output vector of errors; each element of the vector is set to an error for the * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't * found then the error is not defined (use the status parameter to find such cases). * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then * algorithm will use as many levels as pyramids have but no more than maxLevel. * (after the specified maximum number of iterations criteria.maxCount or when the search window * moves by less than criteria.epsilon. *
    *
  • * OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is * not set, then prevPts is copied to nextPts and is considered the initial estimate. *
  • *
  • * OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see * minEigThreshold description); if the flag is not set, then L1 distance between patches * around the original and a moved point, divided by number of pixels in a window, is used as a * error measure. * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a * performance boost. *
  • *
* * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See * CITE: Bouguet00 . The function is parallelized with the TBB library. * * Note: * *
    *
  • * An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/cpp/lkdemo.cpp *
  • *
  • * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at * opencv_source_code/samples/python/lk_track.py *
  • *
  • * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at * opencv_source_code/samples/python/lk_homography.py *
  • *
*/ public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err) { Mat prevPts_mat = prevPts; Mat nextPts_mat = nextPts; Mat status_mat = status; Mat err_mat = err; calcOpticalFlowPyrLK_5(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj); } // // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) // /** * Computes a dense optical flow using the Gunnar Farneback's algorithm. * * @param prev first 8-bit single-channel input image. * @param next second input image of the same size and the same type as prev. * @param flow computed flow image that has the same size as prev and type CV_32FC2. * @param pyr_scale parameter, specifying the image scale (<1) to build pyramids for each image; * pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous * one. * @param levels number of pyramid layers including the initial image; levels=1 means that no extra * layers are created and only the original images are used. * @param winsize averaging window size; larger values increase the algorithm robustness to image * noise and give more chances for fast motion detection, but yield more blurred motion field. * @param iterations number of iterations the algorithm does at each pyramid level. * @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel; * larger values mean that the image will be approximated with smoother surfaces, yielding more * robust algorithm and more blurred motion field, typically poly_n =5 or 7. * @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a * basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a * good value would be poly_sigma=1.5. * @param flags operation flags that can be a combination of the following: *
    *
  • * OPTFLOW_USE_INITIAL_FLOW uses the input flow as an initial flow approximation. *
  • *
  • * OPTFLOW_FARNEBACK_GAUSSIAN uses the Gaussian \(\texttt{winsize}\times\texttt{winsize}\) * filter instead of a box filter of the same size for optical flow estimation; usually, this * option gives z more accurate flow than with a box filter, at the cost of lower speed; * normally, winsize for a Gaussian window should be set to a larger value to achieve the same * level of robustness. *
  • *
* * The function finds an optical flow for each prev pixel using the CITE: Farneback2003 algorithm so that * * \(\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\) * * Note: * *
    *
  • * An example using the optical flow algorithm described by Gunnar Farneback can be found at * opencv_source_code/samples/cpp/fback.cpp *
  • *
  • * (Python) An example using the optical flow algorithm described by Gunnar Farneback can be * found at opencv_source_code/samples/python/opt_flow.py *
  • *
*/ public static void calcOpticalFlowFarneback(Mat prev, Mat next, Mat flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) { calcOpticalFlowFarneback_0(prev.nativeObj, next.nativeObj, flow.nativeObj, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags); } // // C++: double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat()) // /** * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 . * * @param templateImage single-channel template image; CV_8U or CV_32F array. * @param inputImage single-channel input image to be warped to provide an image similar to * templateImage, same type as templateImage. * @param inputMask An optional mask to indicate valid values of inputImage. * * SEE: * findTransformECC * @return automatically generated */ public static double computeECC(Mat templateImage, Mat inputImage, Mat inputMask) { return computeECC_0(templateImage.nativeObj, inputImage.nativeObj, inputMask.nativeObj); } /** * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 . * * @param templateImage single-channel template image; CV_8U or CV_32F array. * @param inputImage single-channel input image to be warped to provide an image similar to * templateImage, same type as templateImage. * * SEE: * findTransformECC * @return automatically generated */ public static double computeECC(Mat templateImage, Mat inputImage) { return computeECC_1(templateImage.nativeObj, inputImage.nativeObj); } // // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize) // /** * Finds the geometric transform (warp) between two images in terms of the ECC criterion CITE: EP08 . * * @param templateImage single-channel template image; CV_8U or CV_32F array. * @param inputImage single-channel input image which should be warped with the final warpMatrix in * order to provide an image similar to templateImage, same type as templateImage. * @param warpMatrix floating-point \(2\times 3\) or \(3\times 3\) mapping matrix (warp). * @param motionType parameter, specifying the type of motion: *
    *
  • * MOTION_TRANSLATION sets a translational motion model; warpMatrix is \(2\times 3\) with * the first \(2\times 2\) part being the unity matrix and the rest two parameters being * estimated. *
  • *
  • * MOTION_EUCLIDEAN sets a Euclidean (rigid) transformation as motion model; three * parameters are estimated; warpMatrix is \(2\times 3\). *
  • *
  • * MOTION_AFFINE sets an affine motion model (DEFAULT); six parameters are estimated; * warpMatrix is \(2\times 3\). *
  • *
  • * MOTION_HOMOGRAPHY sets a homography as a motion model; eight parameters are * estimated;\{@code warpMatrix\} is \(3\times 3\). * @param criteria parameter, specifying the termination criteria of the ECC algorithm; * criteria.epsilon defines the threshold of the increment in the correlation coefficient between two * iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion). * Default values are shown in the declaration above. * @param inputMask An optional mask to indicate valid values of inputImage. * @param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5) *
  • *
* * The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion * (CITE: EP08), that is * * \(\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\) * * where * * \(\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\) * * (the equation holds with homogeneous coordinates for homography). It returns the final enhanced * correlation coefficient, that is the correlation coefficient between the template image and the * final warped input image. When a \(3\times 3\) matrix is given with motionType =0, 1 or 2, the third * row is ignored. * * Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an * area-based alignment that builds on intensity similarities. In essence, the function updates the * initial transformation that roughly aligns the images. If this information is missing, the identity * warp (unity matrix) is used as an initialization. Note that if images undergo strong * displacements/rotations, an initial transformation that roughly aligns the images is necessary * (e.g., a simple euclidean/similarity transform that allows for the images showing the same image * content approximately). Use inverse warping in the second image to take an image close to the first * one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV * sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws * an exception if algorithm does not converges. * * SEE: * computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography * @return automatically generated */ public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize) { return findTransformECC_0(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj, gaussFiltSize); } // // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat()) // public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask) { return findTransformECC_1(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj); } public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria) { return findTransformECC_2(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon); } public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType) { return findTransformECC_3(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType); } public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix) { return findTransformECC_4(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj); } // // C++: Mat cv::readOpticalFlow(String path) // /** * Read a .flo file * * @param path Path to the file to be loaded * * The function readOpticalFlow loads a flow field from a file and returns it as a single matrix. * Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the * flow in the horizontal direction (u), second - vertical (v). * @return automatically generated */ public static Mat readOpticalFlow(String path) { return new Mat(readOpticalFlow_0(path)); } // // C++: bool cv::writeOpticalFlow(String path, Mat flow) // /** * Write a .flo to disk * * @param path Path to the file to be written * @param flow Flow field to be stored * * The function stores a flow field in a file, returns true on success, false otherwise. * The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds * to the flow in the horizontal direction (u), second - vertical (v). * @return automatically generated */ public static boolean writeOpticalFlow(String path, Mat flow) { return writeOpticalFlow_0(path, flow.nativeObj); } // // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true) // /** * Creates MOG2 Background Subtractor * * @param history Length of the history. * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model * to decide whether a pixel is well described by the background model. This parameter does not * affect the background update. * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold, boolean detectShadows) { return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_0(history, varThreshold, detectShadows)); } /** * Creates MOG2 Background Subtractor * * @param history Length of the history. * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model * to decide whether a pixel is well described by the background model. This parameter does not * affect the background update. * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold) { return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_1(history, varThreshold)); } /** * Creates MOG2 Background Subtractor * * @param history Length of the history. * to decide whether a pixel is well described by the background model. This parameter does not * affect the background update. * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history) { return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_2(history)); } /** * Creates MOG2 Background Subtractor * * to decide whether a pixel is well described by the background model. This parameter does not * affect the background update. * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2() { return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_3()); } // // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true) // /** * Creates KNN Background Subtractor * * @param history Length of the history. * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide * whether a pixel is close to that sample. This parameter does not affect the background update. * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold, boolean detectShadows) { return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_0(history, dist2Threshold, detectShadows)); } /** * Creates KNN Background Subtractor * * @param history Length of the history. * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide * whether a pixel is close to that sample. This parameter does not affect the background update. * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold) { return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_1(history, dist2Threshold)); } /** * Creates KNN Background Subtractor * * @param history Length of the history. * whether a pixel is close to that sample. This parameter does not affect the background update. * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history) { return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_2(history)); } /** * Creates KNN Background Subtractor * * whether a pixel is close to that sample. This parameter does not affect the background update. * speed a bit, so if you do not need this feature, set the parameter to false. * @return automatically generated */ public static BackgroundSubtractorKNN createBackgroundSubtractorKNN() { return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_3()); } // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria) private static native double[] CamShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria) private static native int meanShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) private static native int buildOpticalFlowPyramid_0(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage); private static native int buildOpticalFlowPyramid_1(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder); private static native int buildOpticalFlowPyramid_2(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder); private static native int buildOpticalFlowPyramid_3(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives); private static native int buildOpticalFlowPyramid_4(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) private static native void calcOpticalFlowPyrLK_0(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags, double minEigThreshold); private static native void calcOpticalFlowPyrLK_1(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags); private static native void calcOpticalFlowPyrLK_2(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon); private static native void calcOpticalFlowPyrLK_3(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); private static native void calcOpticalFlowPyrLK_4(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height); private static native void calcOpticalFlowPyrLK_5(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj); // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) private static native void calcOpticalFlowFarneback_0(long prev_nativeObj, long next_nativeObj, long flow_nativeObj, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags); // C++: double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat()) private static native double computeECC_0(long templateImage_nativeObj, long inputImage_nativeObj, long inputMask_nativeObj); private static native double computeECC_1(long templateImage_nativeObj, long inputImage_nativeObj); // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize) private static native double findTransformECC_0(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, long inputMask_nativeObj, int gaussFiltSize); // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat()) private static native double findTransformECC_1(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, long inputMask_nativeObj); private static native double findTransformECC_2(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon); private static native double findTransformECC_3(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType); private static native double findTransformECC_4(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj); // C++: Mat cv::readOpticalFlow(String path) private static native long readOpticalFlow_0(String path); // C++: bool cv::writeOpticalFlow(String path, Mat flow) private static native boolean writeOpticalFlow_0(String path, long flow_nativeObj); // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true) private static native long createBackgroundSubtractorMOG2_0(int history, double varThreshold, boolean detectShadows); private static native long createBackgroundSubtractorMOG2_1(int history, double varThreshold); private static native long createBackgroundSubtractorMOG2_2(int history); private static native long createBackgroundSubtractorMOG2_3(); // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true) private static native long createBackgroundSubtractorKNN_0(int history, double dist2Threshold, boolean detectShadows); private static native long createBackgroundSubtractorKNN_1(int history, double dist2Threshold); private static native long createBackgroundSubtractorKNN_2(int history); private static native long createBackgroundSubtractorKNN_3(); }