// // This file is auto-generated. Please don't modify it! // package org.opencv.ximgproc; import org.opencv.core.Algorithm; import org.opencv.core.Mat; // C++: class SuperpixelSLIC /** * Class implementing the SLIC (Simple Linear Iterative Clustering) superpixels * algorithm described in CITE: Achanta2012. * * SLIC (Simple Linear Iterative Clustering) clusters pixels using pixel channels and image plane space * to efficiently generate compact, nearly uniform superpixels. The simplicity of approach makes it * extremely easy to use a lone parameter specifies the number of superpixels and the efficiency of * the algorithm makes it very practical. * Several optimizations are available for SLIC class: * SLICO stands for "Zero parameter SLIC" and it is an optimization of baseline SLIC described in CITE: Achanta2012. * MSLIC stands for "Manifold SLIC" and it is an optimization of baseline SLIC described in CITE: Liu_2017_IEEE. */ public class SuperpixelSLIC extends Algorithm { protected SuperpixelSLIC(long addr) { super(addr); } // internal usage only public static SuperpixelSLIC __fromPtr__(long addr) { return new SuperpixelSLIC(addr); } // // C++: int cv::ximgproc::SuperpixelSLIC::getNumberOfSuperpixels() // /** * Calculates the actual amount of superpixels on a given segmentation computed * and stored in SuperpixelSLIC object. * @return automatically generated */ public int getNumberOfSuperpixels() { return getNumberOfSuperpixels_0(nativeObj); } // // C++: void cv::ximgproc::SuperpixelSLIC::iterate(int num_iterations = 10) // /** * Calculates the superpixel segmentation on a given image with the initialized * parameters in the SuperpixelSLIC object. * * This function can be called again without the need of initializing the algorithm with * createSuperpixelSLIC(). This save the computational cost of allocating memory for all the * structures of the algorithm. * * @param num_iterations Number of iterations. Higher number improves the result. * * The function computes the superpixels segmentation of an image with the parameters initialized * with the function createSuperpixelSLIC(). The algorithms starts from a grid of superpixels and * then refines the boundaries by proposing updates of edges boundaries. */ public void iterate(int num_iterations) { iterate_0(nativeObj, num_iterations); } /** * Calculates the superpixel segmentation on a given image with the initialized * parameters in the SuperpixelSLIC object. * * This function can be called again without the need of initializing the algorithm with * createSuperpixelSLIC(). This save the computational cost of allocating memory for all the * structures of the algorithm. * * * The function computes the superpixels segmentation of an image with the parameters initialized * with the function createSuperpixelSLIC(). The algorithms starts from a grid of superpixels and * then refines the boundaries by proposing updates of edges boundaries. */ public void iterate() { iterate_1(nativeObj); } // // C++: void cv::ximgproc::SuperpixelSLIC::getLabels(Mat& labels_out) // /** * Returns the segmentation labeling of the image. * * Each label represents a superpixel, and each pixel is assigned to one superpixel label. * * @param labels_out Return: A CV_32SC1 integer array containing the labels of the superpixel * segmentation. The labels are in the range [0, getNumberOfSuperpixels()]. * * The function returns an image with the labels of the superpixel segmentation. The labels are in * the range [0, getNumberOfSuperpixels()]. */ public void getLabels(Mat labels_out) { getLabels_0(nativeObj, labels_out.nativeObj); } // // C++: void cv::ximgproc::SuperpixelSLIC::getLabelContourMask(Mat& image, bool thick_line = true) // /** * Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object. * * @param image Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border, * and 0 otherwise. * * @param thick_line If false, the border is only one pixel wide, otherwise all pixels at the border * are masked. * * The function return the boundaries of the superpixel segmentation. */ public void getLabelContourMask(Mat image, boolean thick_line) { getLabelContourMask_0(nativeObj, image.nativeObj, thick_line); } /** * Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object. * * @param image Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border, * and 0 otherwise. * * are masked. * * The function return the boundaries of the superpixel segmentation. */ public void getLabelContourMask(Mat image) { getLabelContourMask_1(nativeObj, image.nativeObj); } // // C++: void cv::ximgproc::SuperpixelSLIC::enforceLabelConnectivity(int min_element_size = 25) // /** * Enforce label connectivity. * * @param min_element_size The minimum element size in percents that should be absorbed into a bigger * superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means * that less then a quarter sized superpixel should be absorbed, this is default. * * The function merge component that is too small, assigning the previously found adjacent label * to this component. Calling this function may change the final number of superpixels. */ public void enforceLabelConnectivity(int min_element_size) { enforceLabelConnectivity_0(nativeObj, min_element_size); } /** * Enforce label connectivity. * * superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means * that less then a quarter sized superpixel should be absorbed, this is default. * * The function merge component that is too small, assigning the previously found adjacent label * to this component. Calling this function may change the final number of superpixels. */ public void enforceLabelConnectivity() { enforceLabelConnectivity_1(nativeObj); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: int cv::ximgproc::SuperpixelSLIC::getNumberOfSuperpixels() private static native int getNumberOfSuperpixels_0(long nativeObj); // C++: void cv::ximgproc::SuperpixelSLIC::iterate(int num_iterations = 10) private static native void iterate_0(long nativeObj, int num_iterations); private static native void iterate_1(long nativeObj); // C++: void cv::ximgproc::SuperpixelSLIC::getLabels(Mat& labels_out) private static native void getLabels_0(long nativeObj, long labels_out_nativeObj); // C++: void cv::ximgproc::SuperpixelSLIC::getLabelContourMask(Mat& image, bool thick_line = true) private static native void getLabelContourMask_0(long nativeObj, long image_nativeObj, boolean thick_line); private static native void getLabelContourMask_1(long nativeObj, long image_nativeObj); // C++: void cv::ximgproc::SuperpixelSLIC::enforceLabelConnectivity(int min_element_size = 25) private static native void enforceLabelConnectivity_0(long nativeObj, int min_element_size); private static native void enforceLabelConnectivity_1(long nativeObj); // native support for java finalize() private static native void delete(long nativeObj); }