// // This file is auto-generated. Please don't modify it! // package org.opencv.xphoto; import org.opencv.core.Mat; import org.opencv.xphoto.WhiteBalancer; // C++: class LearningBasedWB /** * More sophisticated learning-based automatic white balance algorithm. * * As REF: GrayworldWB, this algorithm works by applying different gains to the input * image channels, but their computation is a bit more involved compared to the * simple gray-world assumption. More details about the algorithm can be found in * CITE: Cheng2015 . * * To mask out saturated pixels this function uses only pixels that satisfy the * following condition: * * \( \frac{\textrm{max}(R,G,B)}{\texttt{range_max_val}} < \texttt{saturation_thresh} \) * * Currently supports images of type REF: CV_8UC3 and REF: CV_16UC3. */ public class LearningBasedWB extends WhiteBalancer { protected LearningBasedWB(long addr) { super(addr); } // internal usage only public static LearningBasedWB __fromPtr__(long addr) { return new LearningBasedWB(addr); } // // C++: void cv::xphoto::LearningBasedWB::extractSimpleFeatures(Mat src, Mat& dst) // /** * Implements the feature extraction part of the algorithm. * * In accordance with CITE: Cheng2015 , computes the following features for the input image: * 1. Chromaticity of an average (R,G,B) tuple * 2. Chromaticity of the brightest (R,G,B) tuple (while ignoring saturated pixels) * 3. Chromaticity of the dominant (R,G,B) tuple (the one that has the highest value in the RGB histogram) * 4. Mode of the chromaticity palette, that is constructed by taking 300 most common colors according to * the RGB histogram and projecting them on the chromaticity plane. Mode is the most high-density point * of the palette, which is computed by a straightforward fixed-bandwidth kernel density estimator with * a Epanechnikov kernel function. * * @param src Input three-channel image (BGR color space is assumed). * @param dst An array of four (r,g) chromaticity tuples corresponding to the features listed above. */ public void extractSimpleFeatures(Mat src, Mat dst) { extractSimpleFeatures_0(nativeObj, src.nativeObj, dst.nativeObj); } // // C++: int cv::xphoto::LearningBasedWB::getRangeMaxVal() // /** * Maximum possible value of the input image (e.g. 255 for 8 bit images, * 4095 for 12 bit images) * SEE: setRangeMaxVal * @return automatically generated */ public int getRangeMaxVal() { return getRangeMaxVal_0(nativeObj); } // // C++: void cv::xphoto::LearningBasedWB::setRangeMaxVal(int val) // /** * getRangeMaxVal SEE: getRangeMaxVal * @param val automatically generated */ public void setRangeMaxVal(int val) { setRangeMaxVal_0(nativeObj, val); } // // C++: float cv::xphoto::LearningBasedWB::getSaturationThreshold() // /** * Threshold that is used to determine saturated pixels, i.e. pixels where at least one of the * channels exceeds \(\texttt{saturation_threshold}\times\texttt{range_max_val}\) are ignored. * SEE: setSaturationThreshold * @return automatically generated */ public float getSaturationThreshold() { return getSaturationThreshold_0(nativeObj); } // // C++: void cv::xphoto::LearningBasedWB::setSaturationThreshold(float val) // /** * getSaturationThreshold SEE: getSaturationThreshold * @param val automatically generated */ public void setSaturationThreshold(float val) { setSaturationThreshold_0(nativeObj, val); } // // C++: int cv::xphoto::LearningBasedWB::getHistBinNum() // /** * Defines the size of one dimension of a three-dimensional RGB histogram that is used internally * by the algorithm. It often makes sense to increase the number of bins for images with higher bit depth * (e.g. 256 bins for a 12 bit image). * SEE: setHistBinNum * @return automatically generated */ public int getHistBinNum() { return getHistBinNum_0(nativeObj); } // // C++: void cv::xphoto::LearningBasedWB::setHistBinNum(int val) // /** * getHistBinNum SEE: getHistBinNum * @param val automatically generated */ public void setHistBinNum(int val) { setHistBinNum_0(nativeObj, val); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: void cv::xphoto::LearningBasedWB::extractSimpleFeatures(Mat src, Mat& dst) private static native void extractSimpleFeatures_0(long nativeObj, long src_nativeObj, long dst_nativeObj); // C++: int cv::xphoto::LearningBasedWB::getRangeMaxVal() private static native int getRangeMaxVal_0(long nativeObj); // C++: void cv::xphoto::LearningBasedWB::setRangeMaxVal(int val) private static native void setRangeMaxVal_0(long nativeObj, int val); // C++: float cv::xphoto::LearningBasedWB::getSaturationThreshold() private static native float getSaturationThreshold_0(long nativeObj); // C++: void cv::xphoto::LearningBasedWB::setSaturationThreshold(float val) private static native void setSaturationThreshold_0(long nativeObj, float val); // C++: int cv::xphoto::LearningBasedWB::getHistBinNum() private static native int getHistBinNum_0(long nativeObj); // C++: void cv::xphoto::LearningBasedWB::setHistBinNum(int val) private static native void setHistBinNum_0(long nativeObj, int val); // native support for java finalize() private static native void delete(long nativeObj); }