
 1

Blocks World for Teams (BW4T)
Agent-Environment Interface Specification

March, 2018

This document describes the agent-environment interface for the Blocks World for Teams (BW4T)
environment that allows players to control robots that are part of this simulated environment.

The environment consists of rooms and a so-called drop zone which are connected through halls. See
Figure 1 and 2 for an example map; Figure 1 shows the underlying graph for the map depicted in
Figure 2. Colored blocks are placed inside rooms. The colors at the bottom of the graphical interface
for the BW4T environment (see Figure 2) specify an ordered sequence of colors from left to right. It is
the main goal of the robot(s) to collect and pick up blocks from the rooms and deliver and put down
blocks with colors matching that order in the drop zone. In the example Figure 2 this means that first
a white block, then a pink block, etc. should be delivered to the drop zone.

A robot can only see blocks and other objects in a room when it is inside that room. Robots can only
see other robots when they are nearby. Access to a room or the drop zone is limited to one robot at
a time. That is, once a robot has entered a room or the drop zone, no other robots can enter that
space any more. A robot has four basic capabilities: going to a place (the labels in Figure 1 denote
places), going to a block in a room (from any other place), picking up a block if the robot stands next
to that block, and putting down a block at arbitrary places. Blocks disappear from the environment
when put down in the hall or in the drop zone. Blocks put down in a room appear in that room.

Figure 1. Rooms and connections (default Map1) Figure 2. Overview window of the Environment.

 2

Robots can be controlled by agents or humans (both are referred to as players), thereby providing
the possibility to investigate human-agent robot teamwork. Players can send messages to each
other. To ensure that all players can understand the messages, a fixed set of messages has been
defined. Humans can select these through a GUI, and agents can send them using a predefined
action (see below for more on this).

Domain Labels
In order to be able to reason about and to represent the BW4T environment, an ontology has been
designed. An ontology consists among others of labels to refer to items in the environment. For the
BW4T environment, labels are provided for players, blocks, places, rooms, colors, states, and IDs.
These labels will be used as parameters for actions, percepts, and messages. They are part of a
language that allows players to talk about the environment. Below, this language and its labels are
introduced and explained. We also introduce notation using brackets (<…>) to refer generically to
the type of parameters that actions, etc. can have.

Players
• Description: Players, i.e., the humans or agents that steer robots in the BW4T environment, get

names (IDs) assigned.
• Parameter: <PlayerID>
• Values: Alphanumeric strings starting with a letter.
• Additional explanation: Each player is connected to one simulated robot in the environment

(there can also be un-connected simulated robots). Robots can drive around and pick up and
drop blocks.

E-Partners

• Description: Entities which help players achieve their goal, and support them throughout the
environment, using various

• Parameter: <EPartnerID>
• Values: Alphanumeric strings starting with a letter.
• Additional explanation: E-Partners can have different functionalities. The currently available ones

are: GPS, which helps the player’s navigation, and Forget-me-not, which ensures the player does
not forget his or her e-Partner.

Blocks
• Description: Blocks are the things that can be picked up and put down by a robot. If dropped in

the right order in the drop zone, the overall goal of delivering a sequence of colored blocks is
achieved.

• Parameter: <BlockID>
• Values: Any natural number.
• Additional explanation: Block labels enable agents to distinguish between blocks that have the

same color.

 3

Places
• Description: Rooms, hallways and the drop zone are places in the BW4T environment.
• Parameter: <PlaceID>
• Values: Strings that denote names of places. For example, `FrontDropZone’ is an example of

a place name for the area just in front of the `DropZone’.
• Additional explanation: Figure 1 provides names for different places on that example map.

Rooms
• Description: Rooms are a subclass of places with special properties, i.e., a room can be occupied

and rooms only have one way to enter or exit a room.
• Parameter: <RoomID>
• Values: Examples, see also Figure 1 and 2, are `RoomA1’, `RoomA2’, …, `RoomC3’,

`DropZone’.
• Additional explanation: Rooms and the drop zone allow only one agent to be in there at any

time.

Colors
• Description: Blocks have colors. Blocks should be delivered to the drop zone in an order specified

by color, e.g., first deliver a blue block, then a red block, etc.
• Parameter: <ColorID>
• Values: `Blue’, `Cyan’, `Magenta’, `Orange’, `Red’, `White’,

`Green’, `Yellow’, `Pink’.

State
• Description: A controlled robot can be in one of three different states, traveling if moving from

one to another location, collided if moving failed, and arrived if the robot arrived at its target
location. Target locations can be specified by means of the goTo and goToBlock actions
described below.

• Parameter: <State>
• Values: collided, arrived, travelling

ID
• Description: Each object, whether it is a block, robot or room, is assigned a unique numeric id.
• Parameter: <ObjectID>
• Values: Any number.
• Additional explanation: Id’s are provided, e.g., for locations.

Doors are not provided with names, i.e., they cannot be referred to directly by players. Doors are
associated with a unique room. Doors have special behavior and act as guards: all doors to a room
“close” simultaneously when someone enters the room (from the outside perspective), but from the
inside perspective in a sense there are no doors (effectively, you can always leave a room without
having to open doors).

 4

Asynchronous actions and percepts
The environment is running completely independent of the actors(agents). This has important
implications:

1. Percepts that are taken from the environment are not all taken at a single moment in time. To give
a concrete example, assume bot B is moving. The at-percept of B may be taken while the bot is at
location 1. The atBlock percept may be taken slightly later, when B is at location 2. Again a small time
later, B may have arrived at its destination location 3 and state percept of B would be "arrived".

2. It takes time for all these percepts to arrive at the client (e.g., the agent), to make a decision on the
next action and to send the action back to the environment for execution. The world is probably
changed by the time the agent decided on the next action. For example, rooms that were not
occupied when the percepts were pulled can now be occupied. Because of this, actions may fail.

Percepts
The predicates introduced are used by agents for representing features of the BW4T environment.
Instantiations of these predicates are provided as percepts to an agent, if that agent is connected to a
robot in the environment. Percepts allow an agent to keep track of some of the things that have
changed. Most percepts provide only local information, e.g., when a robot is in a room it can see
colored blocks but otherwise it cannot see these blocks.

Three different types of percepts are distinguished, so-called send once, send on change, send, and
send always percepts. We briefly describe each type of percept:

1. Send once: these percepts are only sent once, at the start of a simulation when an agent is
connected to a robot. For example, map information is only sent once.

2. Send on change: this type of percept is only sent initially and in case something changes. For
example, if a robot just moved to a particular place it receives the at(<PlaceID>) percept
and it will receive a new percept if it moves to another place.

3. Send always: This type of percept is continuously sent. Sometimes certain conditions must hold
as well. For example, the color(<BlockID>,<ColorID>)percept is send continuously for
each block present in a room while a robot is in that room.

We now proceed with describing the various percepts that are made available to an agent that
controls a robot in the BW4T environment. A brief description is given for each predicate used as
percept, and an informal “translation”, the type of the percept, some additional explanation and an
example are also provided. We also indicate when a predicate is used especially for the human GUI
that is available for controlling a robot by adding “HumanBot” as type and are grayed out. NB: these
“HumanBot” percepts are irrelevant when developing your own agent that controls a robot in BW4T.

 5

Predicate: place(<PlaceID>)
• Description: Information about which places there are in the environment.
• Translation: “<PlaceID> is a place.”
• Type: Send once.
• Additional explanation: The interface does not provide information as to which places are rooms.
• Example: place('RoomA1').

Predicate: in(<RoomID>)
• Description: This player is in <RoomID>.
• Translation: “This player is is in <RoomID>.”
• Type: Send always.
• Additional explanation: Percept is local, i.e., is sent only to the player for which it holds.
• Example: in('RoomC1')

Predicate: at(<PlaceID>)
• Description: This player is at <PlaceID>.
• Translation: “This player is located at/near <PlaceID>.”
• Type: Send on change.
• Additional explanation: Percept is local, i.e., is sent only to the player for which it holds.
• Example: at('RightHallB')

Predicate: atBlock(<BlockID>)
• Description: This player is within reach of block <BlockID>.
• Translation: “This player is within reach of block <BlockID>.”
• Type: Send always.
• Additional explanation: Percept is local, i.e., is sent only to the player for which it holds. When

robots are located at a block, it means they are close enough to pick it up.
• Example: atBlock(3)

Predicate: color(<BlockID>, <ColorID>)
• Description: Information about the color of blocks.
• Translation: “Block <BlockID> has color <ColorID>.”
• Type: Send always.
• Additional explanation: Percept is local, i.e., is sent only to the player who is in the same room as

the blocks.
• Example: color(1, red)means that box 1 is red.

Predicate: occupied(<RoomId>)
• Description: Holds if a robot is in a room with name <RoomId>.
• Translation: “Room <RoomId> is occupied.”
• Type: Send always.
• Additional explanation: Percept is global, i.e., if a robot enters a room, the percept is sent to all

players. Whenever a room is occupied it cannot be entered by anyone, i.e., from the perspective
outside the room all doors of that room are closed.

• Example: occupied('RoomA1')means that you cannot enter room A1.

 6

Predicate: holding(<BlockID>)
• Description: Information on the block this player is holding.
• Translation: “This player is holding block <BlockId>.”
• Type: Send always.
• Additional explanation: Percept is local. It is sent only to the agent for which it holds. Robot can

hold multiple blocks. One holding percept is sent for every block being held.
• Example: holding(1).

Predicate: gripperCapacity(<Integer>)
• Description: The capacity of the robot’s gripper.
• Translation: “This player can hold at most <Integer> blocks.
• Type: Send on change.
• Additional explanation: Percept is local. It is sent only to the agent for which it holds.
• Example: gripperCapacity(1).

Predicate: player(<PlayerID>)
• Description: <PlayerID> is an active player.
• Translation: “<PlayerID> is a player.”
• Type: Send always.
• Additional explanation: Only names of other players are sent. The player’s own name is sent with

the ownName(<PlayerID>) percept. We talk about players because we prefer referring to
the controlling entity instead of to the controlled entity, i.e. the robot. Each player is assigned
exactly one robot to control. The names are assigned by the BW4T environment and not by an
agent platform such as GOAL.

• Example: player('Bob').

Predicate: ownName(<PlayerID>)
• Description: <PlayerID> is this player's name.
• Translation: “<PlayerID> is this player's name”
• Type: Send once.
• Additional explanation: We talk about players because we prefer referring to the controlling

entity instead of to the controlled entity, i.e. the robot. Each player is assigned exactly one robot
to control.

• Example: ownName('Bob').

Predicate: sequence([<ColorID>])

• Description: Sequence of colors; this predicate is used to communicate the goal, i.e., the
color order in which blocks have to be dropped at the drop zone.

• Translation: "Blocks should be dropped in the following order: [<ColorID>]."
• Type: Send once.
• Additional explanation: At the start of the game, the entire sequence is sent. The percept is

global, i.e., sent to all players.
• Example: sequence([Blue,Red,Blue])

Predicate: sequenceIndex(<Integer>)

• Description: Expresses the index of the currently needed color in the sequence. The first
index of the sequence is 0.

• Translation: "Goal <Integer>-1 is met, on to goal <Integer>"
• Type: Send on change.
• Additional explanation: The percept is global, i.e., sent to all players. The sequence index is

 7

also increased and sent when the last block of the goal sequence has been delivered. Players
should thus infer themselves that the team goal has been achieved.

• Example: sequenceIndex(3)

Predicate: state(<State>)

• Description: The state that the controlled robot is in.
• Translation: “Robot is in state <State>”
• Type: Send on change.
• Additional explanation: Percept is local. It is sent only to the agent for which it holds. Possible

states are collided, arrived and traveling.
• Example: state(collided)

Predicate: message(<PlayerID>, <Content>)
• Semantics: <Content> is a message received from <PlayerID>.
• Translation: “<Content> is a message received from <PlayerID>.”
• Type: Send on change, HumanBot.
• Additional explanation: Each message is perceived only one time when the message comes in.

Old messages are removed after they have been given as percept. See below for the list of
messages that can be sent by players. This percept should only be used by Java agents. To
transform <Content> to a BW4TMessage object use the MessageTranslator.translateMessage
method. See the Javadoc for more details. An agent that you write in an agent platform like GOAL
has no need for these percepts and does not need to process this type of percept.

• Example: message(Bob,’I am at RoomC1’).

Predicate: robot(<RobotID>)
• Description: Information about what the Repast-ID of the robot is that is controlled by the GOAL

agent.
• Translation: “Robot has Repast Object ID RobotID”
• Type: Send once.
• Additional explanation: Agents should not need this percept.
• Example: robot(15).

Predicate: zone(zoneID, zoneName, Neighbours)
• Description: Information about each zone in the environment.
• Translation: “zoneName with ID zoneID has neighbours Neighbours”
• Type: Send once.
• Additional explanation: zones are interconnected and for path planning. See the action goTo(Id).

Predicate: sendMessage('all', Message)
• Description: This percept is reserved for “HumanBots” running in GOAL. There, this percept is

generated when the user sends a message. The GOAL agent coupled to the HumanBot then
should take care of sending the message using the GOAL send action. Do not confuse this with
the sendMessage action.

• Translation: “user asked to send Message to all”
• Type: Sent every time when user selects the action, HumanBot.
• Additional explanation: An agent that you write yourself has no need for these percepts and does

not need to process this type of percept.

 8

Predicate: goToBlock(Id)
• Description: This percept is reserved for HumanBots running in GOAL. There, this percept is

generated when the user requests to go to a block. The GOAL agent coupled to the HumanBot
then should take the appropriate action.

• Translation: “user asked to go to a block”
• Type: Sent every time when user selects the action, HumanBot.
• Additional explanation: An agent that you write yourself has no need for these percepts and does

not need to process this type of percept.

Predicate: goTo(Id)
• Description: This percept is reserved for HumanBots running in GOAL. There, this percept is

generated when the user requests to go to a place. The GOAL agent coupled to the HumanBot
then should take the appropriate action. See also navigateObstacles.

• Translation: “user asked to go to Id”
• Type: Sent every time when user selects the action, HumanBot.
• Additional explanation: An agent that you write yourself has no need for these percepts and does

not need to process this type of percept.

Predicate: goTo(X,Y)
• Description: This percept is reserved for HumanBots running in GOAL. There, this percept is

generated when the user requests to go to a place. The GOAL agent coupled to the HumanBot
then should take the appropriate action.

• Translation: “user asked to go to position (X,Y)”
• Type: Sent every time when user selects the action, HumanBot.
• Additional explanation: An agent that you write yourself has no need for these percepts and does

not need to process this type of percept.

Predicate: pickUp(BlockID)
• Description: This percept is reserved for HumanBots running in GOAL. There, this percept is

generated when the user requests to pick up a block. The GOAL agent coupled to the HumanBot
then should take the appropriate action.

• Translation: “user asked to pick up block <BlockID>”
• Type: Sent every time when user selects the action.
• Additional explanation: An agent that you write yourself has no need for these percepts and does

not need to process this type of percept.

Predicate: putDown()
• Description: This percept is reserved for HumanBots running in GOAL. There, this percept is

generated when the user requests put down a block. The GOAL agent coupled to the HumanBot
then should take the appropriate action.

• Translation: “user asked to put down a block”
• Type: Sent every time when user selects the action.
• Additional explanation: An agent that you write yourself has no need for these percepts and does

not need to process this type of percept.

 9

Predicate: robotSize(<RobotID>,Width,Height)
• Description: This percept indicates the Width and Height of robot <RobotID >
• Type: Send on change.
• Additional explanation: This percept is used by the client at the creation of the bots so that it can

give them the correct sizes.

Predicate: battery(Percentage)
• Description: This percept indicates the bot battery Percentage. 100% is full. The battery use

depends on the robot’s size and speed. When moving a bot uses 0.02% * size and 0.04% * speed
for each tick. Size is 1 by default, and speed is 0. Speed here is also a percentage, so in range 0%-
100%. A tick is a very small move, typically a bot does 50 of these ticks per second as set by the
speed slider in the server window. These parameters can be adjusted through the configuration
file.

• Type: Send on change.
• Additional explanation: For recharge, the bot should be moved into a charge zone. The battery is

re-charged to 100% immediately the moment the bot enters the charge zone.

Predicate: speed(Speed)
• Description: This percept indicates the Speed setting of the bot. Default is 0.5 which means 50%

of the maximum speed.
• Type: Send on change (but currently it can not be changed, so effectively is once).

Predicate: getEPartners()
• Description: This percept is reserved for HumanBots running in GOAL. There, this percept is

generated when the user wants to know the e-Partners that are present in the zone.
• Type: Send always.

Predicate: oldTargetUnreachable(<RobotID>,Boolean)
• Description: This percept is generated when the bot has a target that is unreachable. Boolean is

set to 1 if target is unreachable, else 0.
• Type: Send on change.

Predicate: bumped(ObjectName)
• Description: This percept is generated when the bot collides with an Object blocking its path.
• Type: Send always.
• Additional explanation: If the obstacle is a robot, the name of that robot is returned.

Predicate: colorblind(Boolean)
• Description: Boolean is true if and only if the bot is color blind.
• Type: Send once.
• Additional explanation: all blocks look dark gray when the bot is color blind. The bot can still talk

about all colors, he only can not perceive them.

 10

Basic Actions
This section describes the basic actions that are available to an agent to control a robot in the BW4T
environment.

Action: goTo(<PlaceID>)
• Expected Condition: <PlaceID> must be a place.
• Expected Effect: The robot first moves to the center of the zone that it is in, or to the nearest zone

center. From there it uses a path planner to find the shortest path to the zone indicated by
<PlaceID>. When successful, the percept state(arrived) is sent.

• Failure:
o If doors are closed, a robot may not be able to go to a location, and in that case the goTo

action fails (silently) and the robot will be close to the door where the action failed. A
percept state(collided) is sent when the goTo action fails this way.

o If the map has been customized to use oneBotPerCorridorZone, a robot may not be able
to enter a zone on the route to the target. Similarly to closed doors, A percept
state(collided) is sent when the goTo action fails silently this way. Also notice that
zones in this case may overlap slightly (or much if designed improperly), and in such
cases a bot may be in multiple zones at once.

o If the bot hits obstacles and failed the goTo, you may try calling navigateObstacles to try
a different route to the target.

Action: goToBlock(<BlockID>)
• Expected Condition: Robot must be in same room as block <BlockID>.
• Expected Effect: You are located at the specified <BlockID> if no obstacles to going to that

location are present. The goToBlock action is successfully terminated when location <BlockID>
is reached, the percept state(arrived) is sent.

• Failure: If doors are closed, a robot may not be able to go to a location, and in that case the goTo
action fails silently and the robot will be close to the door where the action failed. A percept
state(collided) is sent when the action fails this way.

Action: pickUp(<BlockID>)
• Expected Condition: Robot is within reach distance of the block at the coordinates (time, place)

that this action is executed, and it has still free grippers.
• Expected Effect: If succesful, robot has stacked the block on top in its gripper, and the block is not

located anywhere (i.e., there is no "at" percept for the block) until it is dropped. A percept
holding(<BlockID>) will be provided to the agent if the action is successful

• Failure: The action will fail with an error if you are not within range of the block when executing
this action.

Action: putDown
• Expected Condition: Robot is holding at least one block
• Expected Effect: The block on top of the gripper stack is dropped. Additionally, (i) if robot is in a

room, the block is dropped within a tolerance range of the current position of the robot. (ii) If
robot is not in a room and not at the drop zone, then the block leaves the environment and (iii) if
robot is at the drop zone, the block is also removed from the environment; in case it matches the
current color needed according to the sequence predicate (representing the goal of the game) then
this sequence (goal) is updated as well correspondingly.

• Failure: The action will fail with an error if robot is not holding a block.

 11

Action: sendmessage(<PlayerID>, <Content>)
• Expected Condition: None.
• Expected Effect: The message is delivered as a message percept (see percept section) to the

player with the specified <PlayerID >. This can also be set to ‘all’ in which case it will be sent to
all other players.

Additional explanation: See for list of supported messages below. It is advised not to use this action
when developing a GOAL agent; instead use the built-in send commands of GOAL.

Action: pickUpEpartner
• Expected Condition: The HumanBot can pick up an e-Partner.
• Expected Effect: The HumanBot has picked up the e-Partner.
Additional explanation: if a non-human bot attempts to pick the e-Partner, nothing will happen.

Action: dropEPartner
• Expected Condition: The HumanBot is holding a e-Partner.
• Expected Effect: The e-Partner is dropped.

Action: navigateObstacles
• Expected Condition: goTo action has been executed, setting the current target.
• Expected Effect: The bot navigates around the obstacle it is facing.

Additional explanation: This action can be called after a goTo action. The path planner then
considers the current obstacles to the target of the goTo, and re-plan the route for a new try to
reach the target.

E-Partner Percepts
The following list of percepts and actions is exclusive to e-Partners. The initialization and messaging
percepts/actions are the same as the robot.

Predicate: heldBy()
• Description: This percept is generated when the e-Partner’s agent wishes to know by whom it is

currently held.
• Type: Sent on change negation.
• Additional explanation: This percept is only available for Forget-me-not e-Partners.

Predicate: getFunctionalities()
• Description: This percept is generated when the e-Partner inquires on which functionality it has.
• Type: Sent once.

Predicate: isTaken()
• Description: This percept is generated when the e-Partner is picked up by a HumanBot.
• Type: Sent on change negation.
• Additional explanation: This percept is only available for Forget-me-not e-Partners.

Predicate: leftBehind()
• Description: This percept is generated when the e-Partner is dropped.
• Type: Sent on change.
• Additional explanation: This percept is only available for Forget-me-not e-Partners.

 12

Predicate: getAt()
• Description: This percept is generated when the e-Partner requests its location, returning the

zone the e-Partner is in.
• Type: Sent on change.
• Additional explanation: This percept is only available for GPS e-Partners.

Predicate: getLocation()
• Description: This percept is generated when the e-Partner requests its location, returning the

point the e-Partner is at.
• Type: Sent on change.

Predicate: getRooms()
• Description: This percept returns all the rooms on the map.
• Type: Sent once.
• Additional explanation: This percept is only available for GPS e-Partners.

Predicate: getRoom()
• Description: This percept is generated when the e-Partner requests to know in which room it is.
• Type: Sent once.

 13

Messages
Below you can find a list of all supported messages in the BW4T Environment, as to be used by Java
agents in a BW4TMessage object (please refer to the Javadoc). The BW4TMessage defines 5
parameters:

• MessageType type
• String room
• String color
• String playerID
• int number

For each message described below we will also add how to create the equivalent in Java. The
MessageTranslator class provides translation capabilities from natural language to BW4TMessage
and vice versa for Java agents.

Imperative Messages (me)

Message: imp(in(<Me>,<PlaceID>))
• Natural language: I am going to <PlaceID>
• Java: new BW4TMessage(MessageType.goingToRoom,<PlaceID>,null,null)

Message: imp(found(<Me>,<ColorID>)

• Natural language: I am looking for a <ColorID> block
• Java: new BW4TMessage(MessageType.lookingFor, null, <ColorID>, null)

Message: imp(pickedUpFrom(<Me>, <ColorID>, <RoomID>))

• Natural language: I am going to room <RoomID> to get a <ColorID> block/I am getting a
<ColorID> block from room <RoomID>

• Java: new BW4TMessage(MessageType.amGettingColor,<RoomID>, <ColorID>, null)

Message: imp(holding(<Me>,<ColorID>))

• Natural language: I will get a <ColorID> block
• Java: new BW4TMessage(MessageType.willGetColor,<RoomID>,<ColorID>,null)

Message: imp(putDown(<Me>))

• Natural language: I am going to put down a block
• Java: new BW4TMessage(MessageType.aboutToDropOffBlock)

Imperative Messages (other players), i.e., requests

Message: imp(in(<PlayerID>, <RoomID>))
• Natural language: <PlayerID> go to <RoomID>
• Java: new BW4TMessage(MessageType.goToRoom,<RoomID>,null,<PlayerID>)

Message: imp(found(<PlayerID>,<ColorID>))

• Natural language: <PlayerID> find a <ColorID> block
• Java: new BW4TMessage(MessageType.findColor,null,<ColorID>,<PlayerID>)

 14

Message: imp(pickedUpFrom(<PlayerID>,<ColorID>, <RoomID>))
• Natural language: <PlayerID> get the <ColorID> block from room <RoomID>
• Java: new BW4TMessage(MessageType.getColorFromRoom,<RoomID>,<ColorID>,

<PlayerID>)

Message: imp(putDown(<PlayerID>))

• Natural language: <PlayerID> put down the block you’re holding
• Java: new BW4TMessage(MessageType.putDown,null,null,<PlayerID>)

Declarative messages concerning state of environment

Message: at(<ColorID>,<RoomID>)
• Natural language: room <RoomID> contains a <ColorID> block
• Java: new BW4TMessage(MessageType.roomContains,<RoomID>,<ColorID>,null)

Message: at(<Integer>, <ColorID>,<RoomID>)

• Natural language: room <RoomID> contains <Integer> <ColorID> blocks
• Java: new BW4TMessage(MessageType.roomContainsAmount,<RoomID>,<ColorID>,null,

<Integer>)

Message: empty(<RoomID>)

• Natural language: room <RoomID> is empty
• Java: new BW4TMessage(MessageType.roomIsEmpty,<RoomID>,null,null)

Declarative messages concerning the task and the robot

Message: in(<Me>,<RoomID>)
• Natural language: I am in room <RoomID>
• Java: new BW4TMessage(MessageType.inRoom,<RoomID>,null,null)

Message: at(<BlockID>)

• Natural language: I am at a <BlockID> box
• Java: new BW4TMessage(MessageType.atBox,null,<ColorID>,null)

Message: holding(<Me>,<ColorID>)

• Natural language: I have a <ColorID> block.
• Java: new BW4TMessage(MessageType.hasColor,null,<ColorID>,null)

Message: pickedUpFrom(<Me>, <ColorID>, <RoomID>)

• Natural language: I have a <ColorID> block from room <RoomID>.
• Java: new BW4TMessage(MessageType.hasColor,<RoomID>,<ColorID>,null)

Message: putDown(<Me>)

• Natural language: I just dropped off a block
• Java: new BW4TMessage(MessageType.droppedOffBlock)

 15

Message: putDown(<Me>,<ColorID>)
• Natural language: I just dropped off a <ColorID> block
• Java: new BW4TMessage(MessageType.droppedOffBlock,null,<ColorID>,null)

Message: waitingOutside(<Me>,<RoomID>)

• Natural language: I am waiting outside room <RoomID>
• Java: new BW4TMessage(MessageType.amWaitingOutsideRoom,<RoomID>,null,null)

Message: need(<ColorID>)

• Natural language: We need a <ColorID> block.
• Java: new BW4TMessage(MessageType.weNeed,null,<ColorID>,null)

Message: checked(<RoomID>)

• Natural language: room <RoomID> has been checked.
• Java: new BW4TMessage(MessageType.checked,<RoomID>,null,null)

Message: checked(<PlayerID>,<RoomID>)

• Natural language: room <RoomID> has been checked by <PlayerID>
• Java: new BW4TMessage(MessageType.checked,<RoomID>,null,<PlayerID>)

Ask messages concerning state of environment

Message: int(at(_,<RoomID>))
• Natural language: What is in room <RoomID>?
• Java: new BW4TMessage(MessageType.whatIsInRoom,<RoomID>,null,null)
• Additional explanation: The message is interpreted as asking which color is in a certain room.

Thus the first parameter of "at" stands for a <ColorID>.

Message: int(at(<ColorID>,_))

• Natural language: Where is a <ColorID> block?
• Java: new BW4TMessage(MessageType.whereIsColor,null,<ColorID>,null)
• Additional explanation: The message is interpreted as asking in which room a certain color is.

The second parameter of "at" thus stands for a <RoomID>.

Ask messages concerning the task and the robot

Message: int(in(_,<RoomID>))
• Natural language: Who is in room <RoomID>?
• Java: new BW4TMessage(MessageType.whoIsInRoom,<RoomID>,null,null)
• Additional explanation: The first parameter of "in" stands for a <PlayerID>.

Message: int(imp(in(<Me>,_)))

• Natural language: Where should I go?
• Java: new BW4TMessage(MessageType.whereShouldIGo)
• Additional explanation: The second parameter of "in" stands for a <PlaceID>.

 16

Message: int(imp(holding(<Me>,_)))
• Natural language: What color should I get?
• Java: new BW4TMessage(MessageType.whatColorShouldIGet)
• Additional explanation: The second parameter of holding stands for a <ColorID>, not a block

ID.

Message: int(imp(in(_,<RoomID>)))

• Natural language: Is anybody going to room <RoomID>?
• Java: new BW4TMessage(MessageType.isAnybodyGoingToRoom,<RoomID>,null,null)
• Additional explanation: The first parameter of "in" stands for a <PlayerID>.

Message: int(willBeLong(<PlayerID>))

• Natural language: <PlayerID>, will you be long?
• Java: new BW4TMessage(MessageType.willYouBeLong,null,null,<PlayerID>)

Message: int(checked(_, <RoomID>))

• Natural language: Has anybody checked room <RoomID>?
• Java: new BW4TMessage(MessageType.hasAnybodyCheckedRoom,<RoomID>,null,null)
• Additional explanation: The first parameter of "checked" stands for a <PlayerID>.

Message: int(areClose(<PlayerID>))

• Natural language: <PlayerID>, are you close?
• Java: new BW4TMessage(MessageType.areYouClose,null,null,<PlayerID>)

Message: int(holding(_, <ColorID>))

• Natural language: Who has a <ColorID> block?
• Java: new BW4TMessage(MessageType.whoHasABlock,null,<ColorID>,null)
• Additional explanation: The first parameter of "holding" stands for a <PlayerID>.

Answer messages

Message: yes/no/dontknow/wait/ok/idont/ido/
ontheway/faraway/delayed/almostthere/couldnot

• Natural language: yes/no/I don’t know/wait/OK/I don't/I do/I am on the way/I am far away/I
am delayed/I am almost there

• Java: new
BW4TMessage(MessageType.(yes/no/iDoNotKnow/wait/ok/iDoNot/iDo/onTheWay/farAway
/delayed/almostThere/couldNot))

Message: ok(<RoomID>)

• Natural language: OK, room <RoomID>
• Java: new BW4TMessage(MessageType.ok,<RoomID>,null,null)

	Robots can be controlled by agents or humans (both are referred to as players), thereby providing the possibility to investigate human-agent robot teamwork. Players can send messages to each other. To ensure that all players can understand the message...
	Domain Labels
	Asynchronous actions and percepts
	Percepts
	Basic Actions
	This section describes the basic actions that are available to an agent to control a robot in the BW4T environment.
	E-Partner Percepts
	Messages

