% generated: 30 October 1989 % option(s): % % prover % % Richard A. O'Keefe % % Prolog theorem prover % % from "Prolog Compared with Lisp?," SIGPLAN Notices, v. 18 #5, May 1983 % op/3 directives top:-prover. :- op(950, xfy, #). % disjunction :- op(850, xfy, &). % conjunction :- op(500, fx, +). % assertion :- op(500, fx, -). % denial prover :- problem(_, P, C), implies(P, C), fail. prover. % problem set problem( 1, -a, +a). problem( 2, +a, -a & -a). problem( 3, -a, +to_be # -to_be). problem( 4, -a & -a, -a). problem( 5, -a, +b # -a). problem( 6, -a & -b, -b & -a). problem( 7, -a, -b # (+b & -a)). problem( 8, -a # (-b # +c), -b # (-a # +c)). problem( 9, -a # +b, (+b & -c) # (-a # +c)). problem( 10, (-a # +c) & (-b # +c), (-a & -b) # +c). % Prolog theorem prover implies(Premise, Conclusion) :- opposite(Conclusion, Denial), add_conjunction(Premise, Denial, fs([],[],[],[])). opposite(F0 & G0, F1 # G1) :- !, opposite(F0, F1), opposite(G0, G1). opposite(F1 # G1, F0 & G0) :- !, opposite(F1, F0), opposite(G1, G0). opposite(+Atom, -Atom) :- !. opposite(-Atom, +Atom). add_conjunction(F, G, Set) :- expand(F, Set, Mid), expand(G, Mid, New), refute(New). expand(_, refuted, refuted) :- !. expand(F & G, fs(D,_,_,_), refuted) :- includes(D, F & G), !. expand(F & G, fs(D,C,P,N), fs(D,C,P,N)) :- includes(C, F & G), !. expand(F & G, fs(D,C,P,N), New) :- !, expand(F, fs(D,[F & G|C],P,N), Mid), expand(G, Mid, New). expand(F # G, fs(D,C,P,N), Set) :- !, opposite(F # G, Conj), extend(Conj, D, C, D1, fs(D1,C,P,N), Set). expand(+Atom, fs(D,C,P,N), Set) :- !, extend(Atom, P, N, P1, fs(D,C,P1,N), Set). expand(-Atom, fs(D,C,P,N), Set) :- extend(Atom, N, P, N1, fs(D,C,P,N1), Set). includes([Head|_], Head) :- !. includes([_|Tail], This) :- includes(Tail, This). extend(Exp, _, Neg, _, _, refuted) :- includes(Neg, Exp), !. extend(Exp, Pos, _, Pos, Set, Set) :- includes(Pos, Exp), !. extend(Exp, Pos, _, [Exp|Pos], Set, Set). refute(refuted) :- !. refute(fs([F1 & G1|D], C, P, N)) :- opposite(F1, F0), opposite(G1, G0), Set = fs(D, C, P, N), add_conjunction(F0, G1, Set), add_conjunction(F0, G0, Set), add_conjunction(F1, G0, Set).