% This LaTeX document was generated using the LaTeX backend of PlDoc, % The SWI-Prolog documentation system \begin{summarylist}{ll} \predicatesummary{is_ordset}{1}{True if Term is an ordered set.} \predicatesummary{list_to_ord_set}{2}{Transform a list into an ordered set.} \predicatesummary{ord_add_element}{3}{Insert an element into the set.} \predicatesummary{ord_del_element}{3}{Delete an element from an ordered set.} \predicatesummary{ord_disjoint}{2}{True if Set1 and Set2 have no common elements.} \predicatesummary{ord_empty}{1}{True when List is the empty ordered set.} \predicatesummary{ord_intersect}{2}{True if both ordered sets have a non-empty intersection.} \predicatesummary{ord_intersect}{3}{Intersection holds the common elements of Set1 and Set2.} \predicatesummary{ord_intersection}{2}{Intersection of a powerset.} \predicatesummary{ord_intersection}{3}{Intersection holds the common elements of Set1 and Set2.} \predicatesummary{ord_intersection}{4}{Intersection and difference between two ordered sets.} \predicatesummary{ord_memberchk}{2}{True if Element is a member of OrdSet, compared using ==.} \predicatesummary{ord_selectchk}{3}{Selectchk/3, specialised for ordered sets.} \predicatesummary{ord_seteq}{2}{True if Set1 and Set2 have the same elements.} \predicatesummary{ord_subset}{2}{Is true if all elements of Sub are in Super.} \predicatesummary{ord_subtract}{3}{Diff is the set holding all elements of InOSet that are not in NotInOSet.} \predicatesummary{ord_symdiff}{3}{Is true when Difference is the symmetric difference of Set1 and Set2.} \predicatesummary{ord_union}{2}{True if Union is the union of all elements in the superset SetOfSets.} \predicatesummary{ord_union}{3}{Union is the union of Set1 and Set2.} \predicatesummary{ord_union}{4}{True iff ord_union(Set1, Set2, Union) and ord_subtract(Set2, Set1, New).} \end{summarylist}