/* Part of INCLP(R) Author: Leslie De Koninck E-mail: Leslie.DeKoninck@cs.kuleuven.be WWW: http://www.swi-prolog.org Copyright (c) 2006-2011, K.U. Leuven All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(inclpr_inversion, [ all_occurrences/1, invert/3 ]). :- use_module(library(lists), [ reverse/2 ]). % Module for creating the inverse of functions with one occurrence per variable % and for counting the number of variable occurrences. % invert(Function,Variable,Inverse) % % Creates the inverse of function with respect to variable % and stores it into . This means that a constraint % = 0 is transformed into an equivalent constraint % = . invert(Term,Var,Inverse) :- get_attr(Var,inclpr_occurrence_count,one(ReversePath)), reverse(ReversePath,Path), invert(Term,Path,i(-0.0,0.0),Inverse). % invert(Function,Path,InverseIn,InverseOut) % % Converts the constraint = into the equivalent % constraint = where is located by following % the path given by . % A path is a list of 1's and 2's and represents where in the tree formed by % binary operators the variable is located. For example if is the list % [1,2] and is (A+B)*(C+D) then first the subfunction A+B is chosen % because the first element of path is 1 and then B is chosen because the % second element of path is 2. Paths are built while counting the number of % occurrences for each variable. invert(Term,Path,InverseIn,InverseOut) :- ( var(Term) -> InverseOut = InverseIn ; functor(Term,Op,Arity), ( Arity =:= 2 -> Path = [H|T], arg(1,Term,L), arg(2,Term,R), ( H = 1 -> invert_binary_left(Op,InverseIn,R,InverseTemp), invert(L,T,InverseTemp,InverseOut) ; invert_binary_right(Op,L,InverseIn,InverseTemp), invert(R,T,InverseTemp,InverseOut) ) ; arg(1,Term,X), invert(X,Path,-InverseIn,InverseOut) ) ). % invert_binary_left(Operator,InverseIn,Right,InverseOut) % % Converts the constraint = where is composed % of binary operator applied to arguments and into an % equivalent constraint = . invert_binary_left(+,L,R,L-R). invert_binary_left(-,L,R,L+R). invert_binary_left(*,L,R,L/R). invert_binary_left(/,L,R,L*R). invert_binary_left(**,L,R,root(L,R)). % invert_binary_right(Operator,Left,InverseIn,InverseOut) % % Converts the constraint = where is composed % of binary operator applied to arguments and into an % equivalent constraint = . invert_binary_right(+,L,R,R-L). invert_binary_right(-,L,R,L-R). invert_binary_right(*,L,R,R/L). invert_binary_right(/,L,R,L/R). % all_occurrences(Function) % % Counts all occurrences of all variables in and stores them in % the attribute inclpr_occurrence_count of each variable. The attribute either % is the term `one(ReversePath)' with the reverse of a path (see % invert/4) or the term `more' for variables occurring more than once. % Expects that all functors are either unary or binary all_occurrences(Term) :- all_occurrences(Term,[]). % all_occurrences(Function,ReversePath) % % The same as all_occurrences/1 but with a given initial reverse path in % . all_occurrences(Term,ReversePath) :- ( var(Term) -> ( get_attr(Term,inclpr_occurrence_count,_) -> put_attr(Term,inclpr_occurrence_count,more) ; put_attr(Term,inclpr_occurrence_count,one(ReversePath)) ) ; number(Term) -> true ; functor(Term,_,Arity), ( Arity =:= 2 -> arg(1,Term,Arg1), arg(2,Term,Arg2), all_occurrences(Arg1,[1|ReversePath]), all_occurrences(Arg2,[2|ReversePath]) ; arg(1,Term,Arg), all_occurrences(Arg,ReversePath) ) ).