/* Part of INCLP(R) Author: Leslie De Koninck E-mail: Leslie.DeKoninck@cs.kuleuven.be WWW: http://www.swi-prolog.org Copyright (c) 2006-2011, K.U. Leuven All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(inclpr_symbolic_processing, [ partial_derivative/3, to_standard_form/2 ]). % Module for converting constraints into a standard form and for calculating % partial derivatives. % public predicates % partial_derivative(Function,Variable,Derivative) % % Returns in the partial derivative of function with % respect to variable . partial_derivative(Expr,Var,D) :- pd(Expr,Var,Res), rewrite(Res,D). % to_standard_form(Constraint,StandardForm) % % Rewrites the constraint in into the form Res = 0.0 (for % equalities) or Res =< 0.0 (for inequalities). to_standard_form(L = R,Res = 0.0) :- rewrite(L-R,Res). to_standard_form(L =< R, Res =< 0.0) :- rewrite(L-R,Res). to_standard_form(L >= R, Res =< 0.0) :- rewrite(R-L,Res). % private predicates % pd(Function,Var,Derivative) % % Returns in the partial derivative of function with % respect to variable . pd(V,Var,D) :- ( var(V) -> ( V == Var -> D = 1.0 ; D = 0.0 ) ; number(V) -> D = 0.0 ; functor(V,Op,Arity), ( Arity =:= 2 -> arg(1,V,L), arg(2,V,R), pd_binary(Op,L,R,Var,D) ; arg(1,V,X), pd_unary(Op,X,Var,D) ) ). % pd_binary(Operator,Left,Right,Variable,Derivative) % % Returns in the partial derivative with respect to variable % of the function made of the binary operator applied to % functions and . pd_binary(+,L,R,Var,DL+DR) :- pd(L,Var,DL), pd(R,Var,DR). pd_binary(-,L,R,Var,DL-DR) :- pd(L,Var,DL), pd(R,Var,DR). pd_binary(*,L,R,Var,L*DR+R*DL) :- pd(L,Var,DL), pd(R,Var,DR). pd_binary((^),X,N,Var,PD) :- pd_binary((**),X,N,Var,PD). pd_binary((**),X,N,Var,PD) :- integer(N), pd(X,Var,PDX), M is N-1, ( M =:= 0 -> PD = PDX ; M =:= 1 -> PD = 2*X*PDX ; PD = N*(X**M)*PDX ). % pd_unary(Operator,Argument,Variable,Derivative) % % Returns in the partial derivative with respect to variable % of the function made of the unary operator applied to % the function . pd_unary(-,L,Var,-DL) :- pd(L,Var,DL). % rewrite(Function,Rewritten) % % Rewrites function into an equivalent function by % applying some simplifications. rewrite(Term,RW) :- ( var(Term) -> RW = Term ; number(Term) -> RW = Term ; functor(Term,Op,Arity), ( Arity =:= 2 -> arg(1,Term,L), arg(2,Term,R), rewrite_binary(Op,L,R,RW) ; arg(1,Term,X), rewrite_unary(Op,X,RW) ) ). % rewrite_binary(Operator,Left,Right,Rewritten) % % Rewrites the function made of binary operator applied to functions % and into the equivalent but more simple function . rewrite_binary(+,X,Y,Z) :- rewrite(X,Xr), rewrite(Y,Yr), ( number(Xr) -> ( number(Yr) -> Z is Xr + Yr ; Xr =:= 0.0 -> Z = Yr ; nonvar(Yr), Yr = -Ym -> Z = Xr - Ym ; Z = Xr + Yr ) ; number(Yr) -> ( Yr =:= 0.0 -> Z = Xr ; Yr < 0 -> Ym is - Yr, Z = Xr - Ym ; Z = Xr + Yr ) ; nonvar(Yr), Yr = -Ym -> Z = Xr - Ym ; Z = Xr + Yr ). rewrite_binary(-,X,Y,Z) :- rewrite(X,Xr), rewrite(Y,Yr), ( number(Xr) -> ( number(Yr) -> Z is Xr - Yr ; Xr =:= 0 -> ( nonvar(Yr), Yr = -Ym -> Z = Ym ; Z = -Yr ) ; nonvar(Yr), Yr = -Ym -> Z = Xr + Ym ; Z = Xr - Yr ) ; number(Yr) -> ( Yr =:= 0.0 -> Z = Xr ; Yr < 0 -> Ym is -Yr, Z = Xr + Ym ; Z = Xr - Yr ) ; nonvar(Yr), Yr = -Ym -> Z = Xr + Ym ; Z = Xr - Yr ). rewrite_binary(*,X,Y,Z) :- rewrite(X,Xr), rewrite(Y,Yr), ( number(Xr) -> ( number(Yr) -> Z is Xr * Yr ; Xr =:= 0.0 -> Z = 0.0 ; Xr =:= 1.0 -> Z = Yr ; Xr =:= -1.0 -> ( nonvar(Yr), Yr = -Ym -> Z = Ym ; Z = -Yr ) ; Xr < 0 -> Xm is -Xr, ( nonvar(Yr), Yr = -Ym -> Z = Xm * Ym ; Z = -(Xm * Yr) ) ; nonvar(Yr), Yr = -Ym -> Z = -(Xr * Ym) ; Z = Xr * Yr ) ; number(Yr) -> ( Yr =:= 0.0 -> Z = 0.0 ; Yr =:= 1.0 -> Z = Xr ; Yr =:= -1.0 -> ( nonvar(Xr), Xr = -Xm -> Z = Xm ; Z = -Xr ) ; Yr < 0 -> Ym is -Yr, ( nonvar(Xr), Xr = -Xm -> Z = Xm * Ym ; Z = -(Xr * Ym) ) ; nonvar(Xr), Xr = -(Xm) -> Z = -(Xm * Yr) ; Z = Xr * Yr ) ; nonvar(Xr), Xr = -Xm -> ( nonvar(Yr), Yr = -Ym -> Z = Xm * Ym ; Z = -(Xm * Yr) ) ; nonvar(Yr), Yr = -Ym -> Z = -(Xr * Ym) ; Z = Xr * Yr ). rewrite_binary(/,X,Y,Z) :- rewrite(X,Xr), rewrite(Y,Yr), ( number(Xr) -> ( number(Yr) -> Yr =\= 0.0, Z is Xr / Yr ; Xr =:= 0.0 -> Z = 0.0 ; Xr < 0.0 -> Xm is -Xr, ( nonvar(Yr), Yr = -Ym -> Z = Xm / Ym ; Z = -(Xm / Yr) ) ; nonvar(Yr), Yr = -Ym -> Z = -(Xr / Ym) ; Z = Xr / Yr ) ; number(Yr) -> Yr =\= 0.0, ( Yr =:= 1.0 -> Z = Xr ; Yr =:= -1.0 -> ( nonvar(Xr), Xr = -Xm -> Z = Xm ; Z = -Xr ) ; Yr < 0.0 -> Ym is -Yr, ( nonvar(Xr), Xr = -Xm -> Z = Xm / Ym ; Z = -(Xr / Ym) ) ; nonvar(Xr), Xr = -Xm -> Z = -(Xm / Yr) ; Z = Xr / Yr ) ; nonvar(Xr), Xr = -Xm -> ( nonvar(Yr), Yr = -Ym -> Z = Xm / Ym ; Z = -(Xm / Yr) ) ; nonvar(Yr), Yr = -Ym -> Z = -(Xr / Ym) ; Z = Xr / Yr ). rewrite_binary(^,X,N,Z) :- rewrite_binary(**,X,N,Z). rewrite_binary(**,X,N,Z) :- integer(N), rewrite(X,Xr), ( number(Xr) -> Z is Xr ** N ; nonvar(Xr), Xr = -Xm -> ( N mod 2 =:= 0 -> Z = Xm ** N ; Z = -(Xm ** N) ) ; Z = Xr ** N ). % rewrite_unary(Operator,Argument,Rewritten) % % Rewrites the function made of unary operator applied to function % into the equivalent but more simple function . rewrite_unary(-,X,Z) :- rewrite(X,Xr), ( number(Xr) -> Z is -Xr ; nonvar(Xr), Xr = -Xm -> Z is Xm ; Z = -Xr ).