/* $Id$ This is the Porter stemming algorithm, coded up in ANSI C by the author. It may be be regarded as canonical, in that it follows the algorithm presented in Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, no. 3, pp 130-137, only differing from it at the points maked --DEPARTURE-- below. See also http://www.muscat.com/~martin/stem.html The algorithm as described in the paper could be exactly replicated by adjusting the points of DEPARTURE, but this is barely necessary, because (a) the points of DEPARTURE are definitely improvements, and (b) no encoding of the Porter stemmer I have seen is anything like as exact as this version, even with the points of DEPARTURE! You can compile it on Unix with 'gcc -O3 -o stem stem.c' after which 'stem' takes a list of inputs and sends the stemmed equivalent to stdout. The algorithm as encoded here is particularly fast. Release 1 */ #include #include #include #include #include #include #include /* The main part of the stemming algorithm starts here. b is a buffer holding a word to be stemmed. The letters are in b[k0], b[k0+1] ... ending at b[k]. In fact k0 = 0 in this demo program. k is readjusted downwards as the stemming progresses. Zero termination is not in fact used in the algorithm. Note that only lower case sequences are stemmed. Forcing to lower case should be done before stem(...) is called. */ typedef struct vars { char *b; /* work to be stemmed */ int k, k0, j; /* j is a general offset into the string */ } vars; /* cons(i) is TRUE <=> vs->b[i] is a consonant. */ static int cons(int i, vars *vs) { switch (vs->b[i]) { case 'a': case 'e': case 'i': case 'o': case 'u': return FALSE; case 'y': return (i==vs->k0) ? TRUE : !cons(i-1, vs); default: return TRUE; } } /* m() measures the number of consonant sequences between vs->k0 and vs->j. if c is a consonant sequence and v a vowel sequence, and <..> indicates arbitrary presence, gives 0 vc gives 1 vcvc gives 2 vcvcvc gives 3 .... */ static int m(vars *vs) { int n = 0; int i = vs->k0; while(TRUE) { if (i > vs->j) return n; if (! cons(i, vs)) break; i++; } i++; while(TRUE) { while(TRUE) { if (i > vs->j) return n; if (cons(i, vs)) break; i++; } i++; n++; while(TRUE) { if (i > vs->j) return n; if (! cons(i, vs)) break; i++; } i++; } } /* vowelinstem() is TRUE <=> vs->k0,...vs->j contains a vowel */ static int vowelinstem(vars *vs) { int i; for (i = vs->k0; i <= vs->j; i++) if (! cons(i, vs)) return TRUE; return FALSE; } /* doublec(vs->j) is TRUE <=> vs->j,(vs->j-1) contain a double consonant. */ static int doublec(int j, vars *vs) { if (j < vs->k0+1) return FALSE; if (vs->b[j] != vs->b[j-1]) return FALSE; return cons(j, vs); } /* cvc(i) is TRUE <=> i-2,i-1,i has the form consonant - vowel - consonant and also if the second c is not w,x or y. this is used when trying to restore an e at the end of a short word. e.g. cav(e), lov(e), hop(e), crim(e), but snow, box, tray. */ static int cvc(int i, vars *vs) { if (i < vs->k0+2 || !cons(i, vs) || cons(i-1, vs) || !cons(i-2, vs)) return FALSE; { int ch = vs->b[i]; if (ch == 'w' || ch == 'x' || ch == 'y') return FALSE; } return TRUE; } /* ends(s) is TRUE <=> vs->k0,...vs->k ends with the string s. */ static int ends(char * s, vars *vs) { int length = s[0]; if (s[length] != vs->b[vs->k]) return FALSE; /* tiny speed-up */ if (length > vs->k-vs->k0+1) return FALSE; if (memcmp(vs->b+vs->k-length+1,s+1,length) != 0) return FALSE; vs->j = vs->k-length; return TRUE; } /* setto(s) sets (vs->j+1),...vs->k to the characters in the string s, readjusting vs->k. */ static void setto(char * s, vars *vs) { int length = s[0]; memmove(vs->b+vs->j+1,s+1,length); vs->k = vs->j+length; } /* r(s) is used further down. */ static void r(char * s, vars *vs) { if (m(vs) > 0) setto(s, vs); } /* step1ab() gets rid of plurals and -ed or -ing. e.g. caresses -> caress ponies -> poni ties -> ti caress -> caress cats -> cat feed -> feed agreed -> agree disabled -> disable matting -> mat mating -> mate meeting -> meet milling -> mill messing -> mess meetings -> meet */ static void step1ab(vars *vs) { if (vs->b[vs->k] == 's') { if (ends("\04" "sses", vs)) vs->k -= 2; else if (ends("\03" "ies", vs)) setto("\01" "i", vs); else if (vs->b[vs->k-1] != 's') vs->k--; } if (ends("\03" "eed", vs)) { if (m(vs) > 0) vs->k--; } else if ((ends("\02" "ed", vs) || ends("\03" "ing", vs)) && vowelinstem(vs)) { vs->k = vs->j; if (ends("\02" "at", vs)) setto("\03" "ate", vs); else if (ends("\02" "bl", vs)) setto("\03" "ble", vs); else if (ends("\02" "iz", vs)) setto("\03" "ize", vs); else if (doublec(vs->k, vs)) { vs->k--; { int ch = vs->b[vs->k]; if (ch == 'l' || ch == 's' || ch == 'z') vs->k++; } } else if (m(vs) == 1 && cvc(vs->k, vs)) setto("\01" "e", vs); } } /* step1c() turns terminal y to i when there is another vowel in the stem. */ static void step1c(vars *vs) { if (ends("\01" "y", vs) && vowelinstem(vs)) vs->b[vs->k] = 'i'; } /* step2() maps double suffices to single ones. so -ization ( = -ize plus -ation) maps to -ize etc. note that the string before the suffix must give m() > 0. */ static void step2(vars *vs) { if ( vs->k <= 0 ) return; switch (vs->b[vs->k-1]) { case 'a': if (ends("\07" "ational", vs)) { r("\03" "ate", vs); break; } if (ends("\06" "tional", vs)) { r("\04" "tion", vs); break; } break; case 'c': if (ends("\04" "enci", vs)) { r("\04" "ence", vs); break; } if (ends("\04" "anci", vs)) { r("\04" "ance", vs); break; } break; case 'e': if (ends("\04" "izer", vs)) { r("\03" "ize", vs); break; } break; case 'l': if (ends("\03" "bli", vs)) { r("\03" "ble", vs); break; } /*-DEPARTURE-*/ /* To match the published algorithm, replace this line with case 'l': if (ends("\04" "abli", vs)) { r("\04" "able", vs); break; } */ if (ends("\04" "alli", vs)) { r("\02" "al", vs); break; } if (ends("\05" "entli", vs)) { r("\03" "ent", vs); break; } if (ends("\03" "eli", vs)) { r("\01" "e", vs); break; } if (ends("\05" "ousli", vs)) { r("\03" "ous", vs); break; } break; case 'o': if (ends("\07" "ization", vs)) { r("\03" "ize", vs); break; } if (ends("\05" "ation", vs)) { r("\03" "ate", vs); break; } if (ends("\04" "ator", vs)) { r("\03" "ate", vs); break; } break; case 's': if (ends("\05" "alism", vs)) { r("\02" "al", vs); break; } if (ends("\07" "iveness", vs)) { r("\03" "ive", vs); break; } if (ends("\07" "fulness", vs)) { r("\03" "ful", vs); break; } if (ends("\07" "ousness", vs)) { r("\03" "ous", vs); break; } break; case 't': if (ends("\05" "aliti", vs)) { r("\02" "al", vs); break; } if (ends("\05" "iviti", vs)) { r("\03" "ive", vs); break; } if (ends("\06" "biliti", vs)) { r("\03" "ble", vs); break; } break; case 'g': if (ends("\04" "logi", vs)) { r("\03" "log", vs); break; } /*-DEPARTURE-*/ /* To match the published algorithm, delete this line */ } } /* step3() deals with -ic-, -full, -ness etc. similar strategy to step2. */ static void step3(vars *vs) { switch (vs->b[vs->k]) { case 'e': if (ends("\05" "icate", vs)) { r("\02" "ic", vs); break; } if (ends("\05" "ative", vs)) { r("\00" "", vs); break; } if (ends("\05" "alize", vs)) { r("\02" "al", vs); break; } break; case 'i': if (ends("\05" "iciti", vs)) { r("\02" "ic", vs); break; } break; case 'l': if (ends("\04" "ical", vs)) { r("\02" "ic", vs); break; } if (ends("\03" "ful", vs)) { r("\00" "", vs); break; } break; case 's': if (ends("\04" "ness", vs)) { r("\00" "", vs); break; } break; } } /* step4() takes off -ant, -ence etc., in context vcvc. */ static void step4(vars *vs) { if ( vs->k <= 0 ) return; switch (vs->b[vs->k-1]) { case 'a': if (ends("\02" "al", vs)) break; return; case 'c': if (ends("\04" "ance", vs)) break; if (ends("\04" "ence", vs)) break; return; case 'e': if (ends("\02" "er", vs)) break; return; case 'i': if (ends("\02" "ic", vs)) break; return; case 'l': if (ends("\04" "able", vs)) break; if (ends("\04" "ible", vs)) break; return; case 'n': if (ends("\03" "ant", vs)) break; if (ends("\05" "ement", vs)) break; if (ends("\04" "ment", vs)) break; if (ends("\03" "ent", vs)) break; return; case 'o': if (ends("\03" "ion", vs) && vs->j > 0 && (vs->b[vs->j] == 's' || vs->b[vs->j] == 't')) break; if (ends("\02" "ou", vs)) break; return; /* takes care of -ous */ case 's': if (ends("\03" "ism", vs)) break; return; case 't': if (ends("\03" "ate", vs)) break; if (ends("\03" "iti", vs)) break; return; case 'u': if (ends("\03" "ous", vs)) break; return; case 'v': if (ends("\03" "ive", vs)) break; return; case 'z': if (ends("\03" "ize", vs)) break; return; default: return; } if (m(vs) > 1) vs->k = vs->j; } /* step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. */ static void step5(vars *vs) { vs->j = vs->k; if (vs->b[vs->k] == 'e') { int a = m(vs); if (a > 1 || (a == 1 && !cvc(vs->k-1, vs))) vs->k--; } if (vs->b[vs->k] == 'l' && doublec(vs->k, vs) && m(vs) > 1) vs->k--; } /* In stem(p,i,vs->j), p is a char pointer, and the string to be stemmed is from p[i] to p[vs->j] inclusive. Typically i is zero and vs->j is the offset to the last character of a string, (p[vs->j+1] == '\0'). The stemmer adjusts the characters p[i] ... p[vs->j] and returns the new end-point of the string, vs->k. Stemming never increases word length, so i <= vs->k <= vs->j. To turn the stemmer into a module, declare 'stem' as extern, and delete the remainder of this file. */ static int stem(char * p, int i, int j) { vars vs; vs.b = p; vs.k = j; vs.k0 = i; if ( vs.k <= vs.k0+1) return vs.k; /*-DEPARTURE-*/ /* With this line, strings of length 1 or 2 don't go through the stemming process, although no mention is made of this in the published algorithm. Remove the line to match the published algorithm. */ step1ab(&vs); step1c(&vs); step2(&vs); step3(&vs); step4(&vs); step5(&vs); return vs.k; } /*--------------------stemmer definition ends here------------------------*/ /* SWI-Prolog hooks */ static int unaccent(const char *in, size_t len, char *out, size_t size); static foreign_t pl_stem(term_t t_in, term_t t_stem) { char *word; size_t len, end; char *f, *t, *s, *ew; char buf[1024]; char plain[1024]; long l; int rc; if ( !PL_get_nchars(t_in, &len, &word, CVT_ALL|CVT_EXCEPTION) ) { if ( PL_is_number(t_in) ) return PL_unify(t_in, t_stem); return FALSE; } ew = &word[len]; s = len+1 > sizeof(buf) ? PL_malloc(len+1) : buf; for(f=word, t=s; f= 0 ) { if ( s != buf ) PL_free(s); s = plain; } } else { char *s2 = PL_malloc(l+1); unaccent(s, t-s, s2, l+1); if ( s != buf ) PL_free(s); s = s2; } end = stem(s, 0, (int)(len - 1)); s[end + 1] = '\0'; rc = PL_unify_atom_chars(t_stem, s); if ( s != plain && s != buf ) PL_free(s); return rc; } /******************************* * ACCENTS * *******************************/ /* See also http://www.ahinea.com/en/tech/accented-translate.html */ static char *unaccent_def[] = { "A", /* 192 */ "A", /* 193 */ "A", /* 194 */ "A", /* 195 */ "A", /* 196 */ "A", /* 197 */ "AE", /* 198 */ "C", /* 199 */ "E", /* 200 */ "E", /* 201 */ "E", /* 202 */ "E", /* 203 */ "I", /* 204 */ "I", /* 205 */ "I", /* 206 */ "I", /* 207 */ "D", /* 208 */ "N", /* 209 */ "O", /* 210 */ "O", /* 211 */ "O", /* 212 */ "O", /* 213 */ "O", /* 214 */ NULL, /* 215 */ NULL, /* 216 */ "U", /* 217 */ "U", /* 218 */ "U", /* 219 */ "U", /* 220 */ "Y", /* 221 */ NULL, /* 222 */ "ss", /* 223 */ "a", /* 224 */ "a", /* 225 */ "a", /* 226 */ "a", /* 227 */ "a", /* 228 */ "a", /* 229 */ "ae", /* 230 */ "c", /* 231 */ "e", /* 232 */ "e", /* 233 */ "e", /* 234 */ "e", /* 235 */ "i", /* 236 */ "i", /* 237 */ "i", /* 238 */ "i", /* 239 */ "d", /* 240 */ "n", /* 241 */ "o", /* 242 */ "o", /* 243 */ "o", /* 244 */ "o", /* 245 */ "o", /* 246 */ NULL, /* 247 */ NULL, /* 248 */ "u", /* 249 */ "u", /* 250 */ "u", /* 251 */ "u", /* 252 */ "y", /* 253 */ NULL, /* 254 */ "y", /* 255 */ }; static int unaccent(const char *in, size_t len, char *out, size_t size) { char *to = out, *toe = &out[size]; const char *ein = &in[len]; int changes = 0; for( ; in < ein; in++) { int c = (*in)&0xff; char *m; if ( c < 192 || !(m=unaccent_def[c-192]) ) { if ( to < toe ) *to = c; to++; } else { changes++; while(*m) { if ( to < toe ) *to = *m; to++; m++; } } } if ( to < toe ) *to = '\0'; if ( changes == 0 ) return (int)(out-to); /* no change: negative */ return (int)(to-out); } static foreign_t pl_unaccent(term_t from, term_t to) { char buf[1024]; char *f; int len; size_t fl; if ( !PL_get_nchars(from, &fl, &f, CVT_ALL|CVT_EXCEPTION) ) return FALSE; if ( (len=unaccent(f, fl, buf, sizeof(buf))) <= (int)sizeof(buf) ) { if ( len < 0 ) /* no change */ return PL_unify(to, from); else return PL_unify_atom_nchars(to, len, buf); } else { char *t = PL_malloc(len+1); int rc; unaccent(f, fl, t, len+1); rc = PL_unify_atom_nchars(to, len, t); PL_free(t); return rc; } } /******************************* * TOKENISE * *******************************/ typedef enum { TOK_INT, TOK_FLOAT, TOK_WORD, TOK_PUNCT, TOK_UNKNOWN } toktype; #undef isdigit #define issign(c) ((c) == '-' || (c) == '+' ) #define isdigit(c) ((c) >= '0' && (c) <= '9') static int tokenizeA(const char *in, size_t len, int (*call)(const char *s, size_t len, toktype type, void *closure), void *closure) { const unsigned char *s = (const unsigned char*)in; const unsigned char *se = &s[len]; toktype type; while(s= se ) break; st = s; type = TOK_UNKNOWN; if ( *s == '-' && se-s > 1 && isdigit(s[1]) ) { s += 2; type = TOK_INT; } else if ( isdigit(*s) ) { s++; type = TOK_INT; } if ( type == TOK_INT ) { while(s= se ) break; st = s; type = TOK_UNKNOWN; if ( *s == '-' && se-s > 1 && isdigit(s[1]) ) { s += 2; type = TOK_INT; } else if ( isdigit(*s) ) { s++; type = TOK_INT; } if ( type == TOK_INT ) { while(s sizeof(buf) ) { if ( !(a = malloc(len+1)) ) return PL_resource_error("memory"); } else { a = buf; } for(i=s,o=a; len-- > 0; ) *o++ = (char)*i++; *o = '\0'; rc = PL_chars_to_term(a, l->tmp); if ( a != buf ) free(a); if ( !rc ) return rc; break; } default: if ( !PL_put_atom_nchars(l->tmp, len, s) ) return FALSE; break; } return ( PL_unify_list(l->tail, l->head, l->tail) && PL_unify(l->head, l->tmp) ); } static int unify_tokenW(const wchar_t *s, size_t len, toktype type, void *closure) { list *l = closure; switch(type) { case TOK_INT: case TOK_FLOAT: { char buf[100]; char *a, *o; const wchar_t *i; int rc; if ( len+1 > sizeof(buf) ) { if ( !(a = malloc(len+1)) ) return PL_resource_error("memory"); } else { a = buf; } for(i=s,o=a; len-- > 0; ) *o++ = (char)*i++; *o = '\0'; rc = PL_chars_to_term(a, l->tmp); if ( a != buf ) free(a); if ( !rc ) return rc; break; } default: if ( !PL_put_variable(l->tmp) || !PL_unify_wchars(l->tmp, PL_ATOM, len, s) ) return FALSE; break; } return ( PL_unify_list(l->tail, l->head, l->tail) && PL_unify(l->head, l->tmp) ); } static foreign_t pl_tokenize(term_t text, term_t tokens) { char *s; wchar_t *ws; size_t len; list l; l.tail = PL_copy_term_ref(tokens); l.head = PL_new_term_ref(); l.tmp = PL_new_term_ref(); if ( PL_get_nchars(text, &len, &s, CVT_ALL) ) { if ( !tokenizeA(s, len, unify_tokenA, &l) ) return FALSE; } else if ( PL_get_wchars(text, &len, &ws, CVT_ALL|CVT_EXCEPTION) ) { if ( !tokenizeW(ws, len, unify_tokenW, &l) ) return FALSE; } else return FALSE; return PL_unify_nil(l.tail); } static int unify_stem(const char *s, size_t len, toktype type, void *closure) { list *list = closure; if ( type == TOK_PUNCT ) return TRUE; if ( type == TOK_INT || type == TOK_FLOAT ) return unify_tokenA(s, len, type, closure); if ( PL_unify_list(list->tail, list->head, list->tail) ) { char tmp[1024]; char *buf = tmp; char *q; int i, rc, end, l; /* unaccent */ l = abs(unaccent(s, len, buf, sizeof(tmp))); if ( l > (int)sizeof(buf) ) { buf = PL_malloc(l+1); unaccent(s, len, buf, l+1); } /* downcase */ for(q=buf, i=0; i++ < l; q++) *q = tolower(*q); end = stem(buf, 0, l-1); buf[++end] = '\0'; rc = PL_unify_atom_nchars(list->head, end, buf); if ( buf != tmp ) PL_free(buf); return rc; } return FALSE; } static foreign_t pl_atom_to_stem_list(term_t text, term_t stems) { char *s; size_t len; list l; if ( !PL_get_nchars(text, &len, &s, CVT_ALL) ) return FALSE; l.tail = PL_copy_term_ref(stems); l.head = PL_new_term_ref(); l.tmp = PL_new_term_ref(); if ( !tokenizeA(s, len, unify_stem, &l) ) return FALSE; return PL_unify_nil(l.tail); } /******************************* * INSTALL * *******************************/ install_t install_porter_stem() { PL_register_foreign("porter_stem", 2, pl_stem, 0); PL_register_foreign("unaccent_atom", 2, pl_unaccent, 0); PL_register_foreign("tokenize_atom", 2, pl_tokenize, 0); PL_register_foreign("atom_to_stem_list", 2, pl_atom_to_stem_list, 0); } /* end of SWI-Prolog */