/* Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@vu.nl WWW: http://www.swi-prolog.org Copyright (c) 2009-2023, University of Amsterdam VU University Amsterdam CWI, Amsterdam SWI-Prolog Solutions b.v. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(xpath, [ xpath/3, % +DOM, +Spec, -Value xpath_chk/3, % +DOM, +Spec, -Value op(400, fx, //), op(400, fx, /), op(200, fy, @) ]). :- use_module(library(record),[record/1, op(_,_,record)]). :- autoload(library(debug),[assertion/1]). :- autoload(library(error),[instantiation_error/1,must_be/2]). :- autoload(library(lists),[member/2]). :- autoload(library(sgml),[xsd_number_string/2]). /** Select nodes in an XML DOM The library xpath.pl provides predicates to select nodes from an XML DOM tree as produced by library(sgml) based on descriptions inspired by the XPath language. The predicate xpath/3 selects a sub-structure of the DOM non-deterministically based on an XPath-like specification. Not all selectors of XPath are implemented, but the ability to mix xpath/3 calls with arbitrary Prolog code provides a powerful tool for extracting information from XML parse-trees. @see http://www.w3.org/TR/xpath */ :- record element(name, attributes, content). %! xpath_chk(+DOM, +Spec, ?Content) is semidet. % % Semi-deterministic version of xpath/3. xpath_chk(DOM, Spec, Content) :- xpath(DOM, Spec, Content), !. %! xpath(+DOM, +Spec, ?Content) is nondet. % % Match an element in a DOM structure. The syntax is inspired by % XPath, using () rather than [] to select inside an element. % First we can construct paths using / and //: % % $ =|//|=Term : % Select any node in the DOM matching term. % $ =|/|=Term : % Match the root against Term. % $ Term : % Select the immediate children of the root matching Term. % % The Terms above are of type _callable_. The functor specifies % the element name. The element name '*' refers to any element. % The name =self= refers to the top-element itself and is often % used for processing matches of an earlier xpath/3 query. A term % NS:Term refers to an XML name in the namespace NS. Optional % arguments specify additional constraints and functions. The % arguments are processed from left to right. Defined conditional % argument values are: % % $ index(?Index) : % True if the element is the Index-th child of its parent, % where 1 denotes the first child. Index can be one of: % $ `Var` : % `Var` is unified with the index of the matched element. % $ =last= : % True for the last element. % $ =last= - `IntExpr` : % True for the last-minus-nth element. For example, % `last-1` is the element directly preceding the last one. % $ `IntExpr` : % True for the element whose index equals `IntExpr`. % $ Integer : % The N-th element with the given name, with 1 denoting the % first element. Same as index(Integer). % $ =last= : % The last element with the given name. Same as % index(last). % $ =last= - IntExpr : % The IntExpr-th element before the last. % Same as index(last-IntExpr). % % Defined function argument values are: % % $ =self= : % Evaluate to the entire element % $ =content= : % Evaluate to the content of the element (a list) % $ =text= : % Evaluates to all text from the sub-tree as an atom % $ `text(As)` : % Evaluates to all text from the sub-tree according to % `As`, which is either `atom` or `string`. % $ =normalize_space= : % As =text=, but uses normalize_space/2 to normalise % white-space in the output % $ =number= : % Extract an integer or float from the value. Ignores % leading and trailing white-space % $ =|@|=Attribute : % Evaluates to the value of the given attribute. Attribute % can be a compound term. In this case the functor name % denotes the attribute and arguments perform transformations % on the attribute value. Defined transformations are: % % - number % Translate the value into a number using % xsd_number_string/2 from library(sgml). % - integer % As `number`, but subsequently transform the value % into an integer using the round/1 function. % - float % As `number`, but subsequently transform the value % into a float using the float/1 function. % - atom % Translate the value into a Prolog atom. Note that % an atom is normally the default, so ``@href`` and % ``@href(atom)`` are equivalent. The SGML parser % can return attributes as strings using the % attribute_value(string) option. % - string % Translate the value into a Prolog string. % - lower % Translate the value to lower case, preserving % the type. % - upper % Translate the value to upper case, preserving % the type. % % In addition, the argument-list can be _conditions_: % % $ Left = Right : % Succeeds if the left-hand unifies with the right-hand. % If the left-hand side is a function, this is evaluated. % The right-hand side is _never_ evaluated, and thus the % condition `content = content` defines that the content % of the element is the atom `content`. % The functions `lower_case` and `upper_case` can be applied % to Right (see example below). % $ contains(Haystack, Needle) : % Succeeds if Needle is a sub-string of Haystack. % $ XPath : % Succeeds if XPath matches in the currently selected % sub-DOM. For example, the following expression finds % an =h3= element inside a =div= element, where the =div= % element itself contains an =h2= child with a =strong= % child. % % == % //div(h2/strong)/h3 % == % % This is equivalent to the conjunction of XPath goals below. % % == % ..., % xpath(DOM, //(div), Div), % xpath(Div, h2/strong, _), % xpath(Div, h3, Result) % == % % **Examples**: % % Match each table-row in DOM: % % == % xpath(DOM, //tr, TR) % == % % Match the last cell of each tablerow in DOM. This example % illustrates that a result can be the input of subsequent xpath/3 % queries. Using multiple queries on the intermediate TR term % guarantee that all results come from the same table-row: % % == % xpath(DOM, //tr, TR), % xpath(TR, /td(last), TD) % == % % Match each =href= attribute in an element % % == % xpath(DOM, //a(@href), HREF) % == % % Suppose we have a table containing rows where each first column % is the name of a product with a link to details and the second % is the price (a number). The following predicate matches the % name, URL and price: % % == % product(DOM, Name, URL, Price) :- % xpath(DOM, //tr, TR), % xpath(TR, td(1), C1), % xpath(C1, /self(normalize_space), Name), % xpath(C1, a(@href), URL), % xpath(TR, td(2, number), Price). % == % % Suppose we want to select books with genre="thriller" from a % tree containing elements =||= % % == % thriller(DOM, Book) :- % xpath(DOM, //book(@genre=thiller), Book). % == % % Match the elements =||= _and_ =|
|=: % % ```prolog % //table(@align(lower) = center) % ``` % % Get the `width` and `height` of a `div` element as a number, % and the `div` node itself: % % == % xpath(DOM, //div(@width(number)=W, @height(number)=H), Div) % == % % Note that `div` is an infix operator, so parentheses must be % used in cases like the following: % % == % xpath(DOM, //(div), Div) % == xpath(DOM, Spec, Content) :- in_dom(Spec, DOM, Content). in_dom(//Spec, DOM, Value) :- !, element_spec(Spec, Name, Modifiers), sub_dom(I, Len, Name, E, DOM), modifiers(Modifiers, I, Len, E, Value). in_dom(/Spec, E, Value) :- !, element_spec(Spec, Name, Modifiers), ( Name == self -> true ; element_name(E, Name) ), modifiers(Modifiers, 1, 1, E, Value). in_dom(A/B, DOM, Value) :- !, in_dom(A, DOM, Value0), in_dom(B, Value0, Value). in_dom(A//B, DOM, Value) :- !, in_dom(A, DOM, Value0), in_dom(//B, Value0, Value). in_dom(Spec, element(_, _, Content), Value) :- element_spec(Spec, Name, Modifiers), count_named_elements(Content, Name, CLen), CLen > 0, nth_element(N, Name, E, Content), modifiers(Modifiers, N, CLen, E, Value). element_spec(Var, _, _) :- var(Var), !, instantiation_error(Var). element_spec(NS:Term, NS:Name, Modifiers) :- !, callable_name_arguments(Term, Name0, Modifiers), star(Name0, Name). element_spec(Term, Name, Modifiers) :- !, callable_name_arguments(Term, Name0, Modifiers), star(Name0, Name). callable_name_arguments(Atom, Name, Arguments) :- atom(Atom), !, Name = Atom, Arguments = []. callable_name_arguments(Compound, Name, Arguments) :- compound_name_arguments(Compound, Name, Arguments). star(*, _) :- !. star(Name, Name). %! sub_dom(-Index, -Count, +Name, -Sub, +DOM) is nondet. % % Sub is a node in DOM with Name. % % @param Count is the total number of nodes in the content % list Sub appears that have the same name. % @param Index is the 1-based index of Sub of nodes with % Name. sub_dom(1, 1, Name, DOM, DOM) :- element_name(DOM, Name0), \+ Name \= Name0. sub_dom(N, Len, Name, E, element(_,_,Content)) :- !, sub_dom_2(N, Len, Name, E, Content). sub_dom(N, Len, Name, E, Content) :- is_list(Content), sub_dom_2(N, Len, Name, E, Content). sub_dom_2(N, Len, Name, Element, Content) :- ( count_named_elements(Content, Name, Len), nth_element(N, Name, Element, Content) ; member(element(_,_,C2), Content), sub_dom_2(N, Len, Name, Element, C2) ). %! count_named_elements(+Content, +Name, -Count) is det. % % Count is the number of nodes with Name in Content. count_named_elements(Content, Name, Count) :- count_named_elements(Content, Name, 0, Count). count_named_elements([], _, Count, Count). count_named_elements([element(Name,_,_)|T], Name0, C0, C) :- \+ Name \= Name0, !, C1 is C0+1, count_named_elements(T, Name0, C1, C). count_named_elements([_|T], Name, C0, C) :- count_named_elements(T, Name, C0, C). %! nth_element(?N, +Name, -Element, +Content:list) is nondet. % % True if Element is the N-th element with name in Content. nth_element(N, Name, Element, Content) :- nth_element_(1, N, Name, Element, Content). nth_element_(I, N, Name, E, [H|T]) :- element_name(H, Name0), \+ Name \= Name0, !, ( N = I, E = H ; I2 is I + 1, ( nonvar(N), I2 > N -> !, fail ; true ), nth_element_(I2, N, Name, E, T) ). nth_element_(I, N, Name, E, [_|T]) :- nth_element_(I, N, Name, E, T). %! modifiers(+Modifiers, +I, +Clen, +DOM, -Value) % % modifiers([], _, _, Value, Value). modifiers([H|T], I, L, Value0, Value) :- modifier(H, I, L, Value0, Value1), modifiers(T, I, L, Value1, Value). modifier(M, _, _, _, _) :- var(M), !, instantiation_error(M). modifier(Index, I, L, Value0, Value) :- implicit_index_modifier(Index), !, Value = Value0, index_modifier(Index, I, L). modifier(index(Index), I, L, Value, Value) :- !, index_modifier(Index, I, L). modifier(Function, _, _, In, Out) :- xpath_function(Function), !, xpath_function(Function, In, Out). modifier(Function, _, _, In, Out) :- xpath_condition(Function, In), Out = In. implicit_index_modifier(I) :- integer(I), !. implicit_index_modifier(last). implicit_index_modifier(last-_Expr). index_modifier(Var, I, _L) :- var(Var), !, Var = I. index_modifier(last, I, L) :- !, I =:= L. index_modifier(last-Expr, I, L) :- !, I =:= L-Expr. index_modifier(N, I, _) :- N =:= I. xpath_function(self, DOM, Value) :- % self !, Value = DOM. xpath_function(content, Element, Value) :- % content !, element_content(Element, Value). xpath_function(text, DOM, Text) :- % text !, text_of_dom(DOM, atom, Text). xpath_function(text(As), DOM, Text) :- % text(As) !, text_of_dom(DOM, As, Text). xpath_function(normalize_space, DOM, Text) :- % normalize_space !, text_of_dom(DOM, string, Text0), normalize_space(atom(Text), Text0). xpath_function(number, DOM, Number) :- % number !, text_of_dom(DOM, string, Text0), normalize_space(string(Text), Text0), catch(xsd_number_string(Number, Text), _, fail). xpath_function(@Name, element(_, Attrs, _), Value) :- % @Name !, ( atom(Name) -> memberchk(Name=Value, Attrs) ; compound(Name) -> compound_name_arguments(Name, AName, AOps), memberchk(AName=Value0, Attrs), translate_attribute(AOps, Value0, Value) ; member(Name=Value, Attrs) ). xpath_function(quote(Value), _, Value). % quote(Value) xpath_function(self). xpath_function(content). xpath_function(text). xpath_function(text(_)). xpath_function(normalize_space). xpath_function(number). xpath_function(@_). xpath_function(quote(_)). translate_attribute([], Value, Value). translate_attribute([H|T], Value0, Value) :- translate_attr(H, Value0, Value1), translate_attribute(T, Value1, Value). translate_attr(number, Value0, Value) :- xsd_number_string(Value, Value0). translate_attr(integer, Value0, Value) :- xsd_number_string(Value1, Value0), Value is round(Value1). translate_attr(float, Value0, Value) :- xsd_number_string(Value1, Value0), Value is float(Value1). translate_attr(atom, Value0, Value) :- atom_string(Value, Value0). translate_attr(string, Value0, Value) :- atom_string(Value0, Value). translate_attr(lower, Value0, Value) :- ( atom(Value0) -> downcase_atom(Value0, Value) ; string_lower(Value0, Value) ). translate_attr(upper, Value0, Value) :- ( atom(Value0) -> upcase_atom(Value0, Value) ; string_upper(Value0, Value) ). xpath_condition(Left = Right, Value) :- % = !, var_or_function(Left, Value, LeftValue), process_equality(LeftValue, Right). xpath_condition(contains(Haystack, Needle), Value) :- % contains(Haystack, Needle) !, val_or_function(Haystack, Value, HaystackValue), val_or_function(Needle, Value, NeedleValue), atom(HaystackValue), atom(NeedleValue), ( sub_atom(HaystackValue, _, _, _, NeedleValue) -> true ). xpath_condition(Spec, Dom) :- in_dom(Spec, Dom, _). %! process_equality(+Left, +Right) is semidet. % % Provides (very) partial support for XSLT functions that can be % applied according to the XPath 2 specification. % % For example the XPath expression in [1], and the equivalent % Prolog expression in [2], would both match the HTML element in % [3]. % % == % [1] //table[align=lower-case(center)] % [2] //table(@align=lower_case(center)) % [3]
% == process_equality(Left, Right) :- var(Right), !, Left = Right. process_equality(Left, lower_case(Right)) :- !, downcase_atom(Left, Right). process_equality(Left, upper_case(Right)) :- !, upcase_atom(Left, Right). process_equality(Left, Right) :- Left = Right, !. process_equality(Left, Right) :- atom(Left), atomic(Right), \+ atom(Left), atom_string(Left, Right). var_or_function(Arg, _, Arg) :- var(Arg), !. var_or_function(Func, Value0, Value) :- xpath_function(Func), !, xpath_function(Func, Value0, Value). var_or_function(Value, _, Value). val_or_function(Arg, _, Arg) :- var(Arg), !, instantiation_error(Arg). val_or_function(Func, Value0, Value) :- % TBD xpath_function(Func, Value0, Value), !. val_or_function(Value, _, Value). %! text_of_dom(+DOM, +As, -Text:atom) is det. % % Text is the joined textual content of DOM. text_of_dom(DOM, As, Text) :- phrase(text_of(DOM), Tokens), ( As == atom -> atomic_list_concat(Tokens, Text) ; As == string -> atomics_to_string(Tokens, Text) ; must_be(oneof([atom,string]), As) ). text_of(element(_,_,Content)) --> text_of_list(Content). text_of([]) --> []. text_of([H|T]) --> text_of(H), text_of(T). text_of_list([]) --> []. text_of_list([H|T]) --> text_of_1(H), text_of_list(T). text_of_1(element(_,_,Content)) --> !, text_of_list(Content). text_of_1(Data) --> { assertion(atom_or_string(Data)) }, [Data]. atom_or_string(Data) :- ( atom(Data) -> true ; string(Data) ).