/* Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@vu.nl WWW: http://www.swi-prolog.org Copyright (c) 2019, VU University Amsterdam 2021, SWI-Prolog Solutions b.v. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(test_reeval, [ test_reeval/0 ]). :- use_module(library(plunit)). :- use_module(library(debug)). :- use_module(library(wfs)). /** Incremental tabling reevaluation tests */ test_reeval :- run_tests([ tabling_reeval, tabling_reeval_merged, dynamic_tabled, dynamic_tabled2, dynamic_tabled3, dynamic_tabled4 ]). :- begin_tests(tabling_reeval, [ sto(rational_trees), cleanup(abolish_all_tables) ]). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Two mutual dependent goals depending on the same dynamic predicate. We should _not_ create a sub-environment for solving the dependent goal. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ :- table (p/1, q/1) as incremental. :- dynamic([max/1], [incremental(true)]). max(2). set_max(Max) :- retractall(max(_)), assert(max(Max)). p(Y) :- q(X), max(Max), X < Max, Y is X+1. p(0). q(Y) :- p(X), max(Max), X < Max, Y is X+1. q(0). test(mutal_dependent, Ys = [0,1,2,3]) :- set_max(2), setof(X, p(X), Xs), assertion(Xs == [0,1,2]), set_max(3), setof(Y, p(Y), Ys). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Test reseting the `falsecount` for a dynamic node when it is called from a new tabled goal. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ :- table (p2/1, q2/1) as incremental. :- dynamic([d2/1], [incremental(true)]). p2(X) :- d2(X). q2(X) :- d2(X). test(multiple_dependents, [cleanup(retractall(d2(_)))]) :- asserta(d2(1)), answers(X, p2(X), [1]), assert(d2(2)), answers(X, q2(X), [1,2]), assert(d2(3)), answers(X, q2(X), [1,2,3]). :- end_tests(tabling_reeval). :- meta_predicate answers(?, 0, +). answers(Templ, Goal, Expected) :- findall(Templ, Goal, Got0), sort(Got0, Got), sort(Expected, Expected1), assertion(Got =@= Expected1). :- begin_tests(tabling_reeval_merged, [ sto(rational_trees), cleanup(abolish_all_tables) ]). :- dynamic d/2 as incremental. :- table p/2 as incremental. p(X,Y) :- d(X,Y), Y > 10. p(X,Z) :- d(X,Y), p(Y,Z). % Tables being re-evaluated end up in a merged SCC. Now we must be % careful to first propagate the no-changes and then clear the % reevaluation state of the nodes. test(only) :- assert(d(1,2)), assert(d(3,4)), eval(p(1,_)), eval(p(3,_)), assert(d(3,1)), assert(d(1,3)), eval(p(1,_)). % caused assertion on falsecount >= 0 :- end_tests(tabling_reeval_merged). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :- begin_tests(dynamic_tabled, [ sto(rational_trees), cleanup(abolish_all_tables) ]). % A incrementally tabled predicate can also be dynamic. :- table (p/1,q/1) as incremental. :- dynamic (p/1,q/1) as incremental. p(X) :- tnot(q(X)), tnot(p(X)). test(wfs, [ cleanup(retractall(q(_))), P == [(p(1):-tnot(p(1)))] ]) :- assert(q(1)), eval(p(1)), retract(q(1)), call_residual_program(p(1), P). :- end_tests(dynamic_tabled). :- begin_tests(dynamic_tabled2, [ sto(rational_trees), cleanup(abolish_all_tables) ]). % A incrementally tabled predicate can also be dynamic. :- table (p/1,qs/1) as incremental. :- dynamic q/1 as incremental. p(X) :- tnot(qs(X)), tnot(p(X)). p(X) :- qs(X). qs(X) :- q(X). test(wfs, [ cleanup(retractall(q(_))), P == [(p(1):-tnot(p(1)))] ]) :- assert(q(1)), expect(x, p(1), [x]), retract(q(1)), call_residual_program(p(1), P). % Validate that a conditional answer that became unconditional % worls and proper reinitialization of the worklist when it is used % again. test(wfs2, [ cleanup(retractall(q(_))), P == [(p(1):-tnot(p(1)))] ]) :- assert(q(1)), expect(x, p(1), [x]), retract(q(1)), call_residual_program(p(1), P1), assertion(P1 == [(p(1):-tnot(p(1)))]), assert(q(1)), expect(x, p(1), [x]), retract(q(1)), call_residual_program(p(1), P). :- end_tests(dynamic_tabled2). :- begin_tests(dynamic_tabled3, [ sto(rational_trees), cleanup(abolish_all_tables) ]). % Test that tnot creates a dependency :- table (p/1,qs/1,rs/1) as incremental. :- dynamic q/1 as incremental. p(X) :- tnot(qs(X)), tnot(p(X)). p(X) :- tnot(rs(X)), tnot(p(X)). qs(X) :- q(X). rs(X) :- q(X). test(wfs, [ cleanup(retractall(q(_))) ]) :- assert(q(1)), expect(x, p(1), []), retract(q(1)), call_residual_program(p(1), P), assertion(P == [(p(1):-tnot(p(1)))]), assert(q(1)), expect(x, p(1), []). :- end_tests(dynamic_tabled3). :- begin_tests(dynamic_tabled4, [ sto(rational_trees), cleanup(abolish_all_tables) ]). :- table (p/1,q/1,r/1) as incremental. :- dynamic r1/1 as incremental. p(X) :- tnot(q(X)), r(X), tnot(p(X)). p(X) :- r(X). q(X) :- tnot(r(X)). r(X) :- r1(X). test(wfs, [ cleanup(retractall(r1(_))) ]) :- assert(r1(1)), expect(x, p(1), [x]), retract(r1(1)), expect(y, p(1), []). :- end_tests(dynamic_tabled4). /******************************* * SHARED TEST CODE * *******************************/ :- meta_predicate eval(0), expect(?, 0, +). eval(G) :- forall(G, true). expect(Templ, Goal, Answer) :- findall(Templ, Goal, R0), sort(R0, R), sort(Answer, Answer1), assertion(Answer1 == R).