;; MeTTa port for deduction PLN rule ;; using equality, = ;; ;; (≞ P ptv) ;; (≞ Q qtv) ;; (≞ R rtv) ;; (≞ (→ P Q) tv1) ;; (≞ (→ Q R) tv2) ;; ⊢ ;; (≞ (→ P R) TV) ;; ;; where ptv, qtv, rtv, tv1 and tv2 are truth values of the ;; premises P, Q, R, (→ P Q) and (→ Q R) respectively. ;; TV represents the resulting truth value of the conclusion. ;; Import formula functions !(import! &self ../common/DeductionFormula.metta) ;;;;;;;;;;;;;;;;;;;;; ;; Rule Definition ;; ;;;;;;;;;;;;;;;;;;;;; ;; Forward (= (, (≞ $p $ptv) (≞ $q $qtv) (≞ $r $rtv) (≞ (→ $p $q) $pqtv) (≞ (→ $q $r) $qrtv)) (≞ (→ $p $r) (deduction-formula ($ptv $qtv $rtv $pqtv $qrtv)))) ;; Backward ;; Unfortunately this won't work, the interpreter cannot unify the left hand side of ;; the equality because it contains function calls, as opposed to just constructors. (= (≞ (→ $p $r) (deduction-formula $ptv $qtv $rtv $pqtv $qrtv)) (, (≞ $p $ptv) (≞ $q $qtv) (≞ $r $rtv) (≞ (→ $p $q) $pqtv) (≞ (→ $q $r) $qrtv)))