;; MeTTa port for deduction PLN rule ;; using match ;; ;; (≞ P ptv) ;; (≞ Q qtv) ;; (≞ R rtv) ;; (≞ (→ P Q) tv1) ;; (≞ (→ Q R) tv2) ;; ⊢ ;; (≞ (→ P R) TV) ;; ;; where ptv, qtv, rtv, tv1 and tv2 are truth values of the ;; premises P, Q, R, (→ P Q) and (→ Q R) respectively. ;; TV represents the resulting truth value of the conclusion. ;; Import formula functions !(import! &self ../common/DeductionFormula.metta) ;;;;;;;;;;;;;;;;;;;;; ;; Rule Definition ;; ;;;;;;;;;;;;;;;;;;;;; ;; Deduction rule represented as a function. ;; ;; P ≞ PTV ;; Q ≞ QTV ;; R ≞ RTV ;; P → Q ≞ PQTV ;; Q → R ≞ RQTV ;; ⊢ ;; P → R ≞ TV (= (deduction (≞ $p $ptv) (≞ $q $qtv) (≞ $r $rtv) (≞ (→ $p $q) $pqtv) (≞ (→ $q $r) $qrtv)) (≞ (→ $p $r) (ded_formula $ptv $qtv $rtv $pqtv $qrtv))) ;; Corresponding matching query of that rule (: deduction_match (-> $kb Atom)) (= (deduction_match $kb) (let* (($prem1 (≞ $p $ptv)) ($prem2 (≞ $q $qtv)) ($prem3 (≞ $r $rtv)) ($prem4 (≞ (→ $p $q) $pqtv)) ($prem5 (≞ (→ $q $r) $qrtv))) (match $kb ;; Premises (, $prem1 $prem2 $prem3 $prem4 $prem5) ;; Conclusion (deduction $prem1 $prem2 $prem3 $prem4 $prem5))))