;; stdlib extension (: If (-> Bool Atom Atom)) (= (If True $then) $then) (= (If False $then) ()) (: If (-> Bool Atom Atom Atom)) (= (If $cond $then $else) (if $cond $then $else)) (= (TupleConcat $Ev1 $Ev2) (collapse (superpose ((superpose $Ev1) (superpose $Ev2))))) (= (max $1 $2) (If (> $1 $2) $1 $2)) (= (min $1 $2) (If (< $1 $2) $1 $2)) (= (abs $x) (If (< $x 0) (- 0 $x) $x)) (: sequential (-> Expression %Undefined%)) (= (sequential $1) (superpose $1)) (: do (-> Expression %Undefined%)) (= (do $1) (case $1 ())) (= (TupleCount ()) 0) (= (TupleCount (1)) 1) (= (BuildTupleCounts $TOld $C $N) (let $T (collapse (superpose (1 (superpose $TOld)))) (superpose ((add-atom &self (= (TupleCount $T) (+ $C 2))) (If (< $C $N) (BuildTupleCounts $T (+ $C 1) $N)))))) (: CountElement (-> Expression Number)) (= (CountElement $x) (case $x (($y 1)))) ;;Build for count up to 100 (takes a few sec but it is worth it if space or generally collapse counts are often needed) !(BuildTupleCounts (1) 0 100) (: CollapseCardinality (-> Expression Number)) (= (CollapseCardinality $expression) (TupleCount (collapse (CountElement $expression)))) ;; Truth functions (= (Truth_c2w $c) (/ $c (- 1 $c))) (= (Truth_w2c $w) (/ $w (+ $w 1))) (= (Truth_Deduction ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $f1 $f2) (* $c1 $c2)))) (= (Truth_Abduction ($f1 $c1) ($f2 $c2)) ($f2 (Truth_w2c (* (* $f1 $c1) $c2)))) (= (Truth_Induction $T1 $T2) (Truth_Abduction $T2 $T1)) (= (Truth_Exemplification ($f1 $c1) ($f2 $c2)) (1.0 (Truth_w2c (* (* $f1 $f2) (* $c1 $c2))))) (= (Truth_StructuralDeduction $T) (Truth_Deduction $T (1.0 0.9))) (= (Truth_Negation ($f $c)) ((- 1 $f) $c)) (= (Truth StructuralDeductionNegated $T) (Truth_Negation (Truth_StructuralDeduction $T))) (= (Truth_Intersection ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* $c1 $c2))) (= (Truth_StructuralIntersection $T) (Truth_Intersection $T (1.0 0.9))) (= (Truth_or $a $b) (- 1 (* (- 1 $a) (- 1 $b)))) (= (Truth_Comparison ($f1 $c1) ($f2 $c2)) (let $f0 (Truth_or $f1 $f2) ((If (== $f0 0.0) 0.0 (/ (* $f1 $f2) $f0)) (Truth_w2c (* $f0 (* $c1 $c2)))))) (= (Truth_Analogy ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $c1 $c2) $f2))) (= (Truth_Resemblance ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $c1 $c2) (Truth_or $f1 $f2)))) (= (Truth_Union ($f1 $c1) ($f2 $c2)) ((Truth_or $f1 $f2) (* $c1 $c2))) (= (Truth_Difference ($f1 $c1) ($f2 $c2)) ((* $f1 (- 1 $f2)) (* $c1 $c2))) (= (Truth_DecomposePNN ($f1 $c1) ($f2 $c2)) (let $fn (* $f1 (- 1 $f2)) ((- 1 $fn) (* $fn (* $c1 $c2))))) (= (Truth_DecomposeNPP ($f1 $c1) ($f2 $c2)) (let $f (* (- 1 $f1) $f2) ($f (* $f (* $c1 $c2))))) (= (Truth_DecomposePNP ($f1 $c1) ($f2 $c2)) (let $f (* $f1 (- 1 $f2)) ($f (* $f (* $c1 $c2))))) (= (Truth_DecomposePPP $v1 $v2) (Truth_DecomposeNPP (Truth_Negation $v1) $v2)) (= (Truth_DecomposeNNN ($f1 $c1) ($f2 $c2)) (let $fn (* (- 1 $f1) (- 1 $f2)) ((- 1 $fn) (* $fn (* $c1 $c2))))) (= (Truth_Eternalize ($f $c)) ($f (Truth_w2c $c))) (= (Truth_Revision ($f1 $c1) ($f2 $c2)) (let* (($w1 (Truth_c2w $c1)) ($w2 (Truth_c2w $c2)) ($w (+ $w1 $w2)) ($f (/ (+ (* $w1 $f1) (* $w2 $f2)) $w)) ($c (Truth_w2c $w))) ((min 1.00 $f) (min 0.99 (max (max $c $c1) $c2))))) (= (Truth_Expectation ($f $c)) (+ (* $c (- $f 0.5)) 0.5)) ;;NAL-1 ;;!Syllogistic rules for Inheritance: (= (|- (($a --> $b) $T1) (($b --> $c) $T2)) (($a --> $c) (Truth_Deduction $T1 $T2))) (= (|- (($a --> $b) $T1) (($a --> $c) $T2)) (($c --> $b) (Truth_Induction $T1 $T2))) (= (|- (($a --> $c) $T1) (($b --> $c) $T2)) (($b --> $a) (Truth_Abduction $T1 $T2))) (= (|- (($a --> $b) $T1) (($b --> $c) $T2)) (($c --> $a) (Truth_Exemplification $T1 $T2))) ;;NAL-2 ;;!Rules for Similarity: (= (|- (($S <-> $P) $T)) (($P <-> $S) (Truth_StructuralIntersection $T))) (= (|- (($M <-> $P) $T1) (($S <-> $M) $T2)) (($S <-> $P) (Truth_Resemblance $T1 $T2))) (= (|- (($P --> $M) $T1) (($S --> $M) $T2)) (($S <-> $P) (Truth_Comparison $T1 $T2))) (= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($S <-> $P) (Truth_Comparison $T1 $T2))) (= (|- (($M --> $P) $T1) (($S <-> $M) $T2)) (($S --> $P) (Truth_Analogy $T1 $T2))) (= (|- (($P --> $M) $T1) (($S <-> $M) $T2)) (($P --> $S) (Truth_Analogy $T1 $T2))) ;;!Dealing with properties and instances: (= (|- (($S --> ({ $P })) $T)) (($S <-> ({ $P })) (Truth_StructuralIntersection $T))) (= (|- ((([ $S ]) --> $P) $T)) ((([ $S ]) <-> $P) (Truth_StructuralIntersection $T))) (= (|- ((({ $M }) --> $P) $T1) (($S <-> $M) $T2)) ((({ $S }) --> $P) (Truth_Analogy $T1 $T2))) (= (|- (($P --> ([ $M ])) $T1) (($S <-> $M) $T2)) (($P --> ([ $S ])) (Truth_Analogy $T1 $T2))) (= (|- ((({ $A }) <-> ({ $B }))) ($A <-> $B) (Truth_StructuralIntersection $T))) (= (|- ((([ $A ]) <-> ([ $B ]))) ($A <-> $B) (Truth_StructuralIntersection $T))) ;;NAL-3 ;;!Set decomposition: (= (|- ((({ $A $B }) --> $M) $T)) ((({ $A }) --> $M) (Truth_StructuralDeduction $T))) (= (|- ((({ $A $B }) --> $M) $T)) ((({ $B }) --> $M) (Truth_StructuralDeduction $T))) (= (|- ((M --> ([ $A $B ])) $T)) ((M --> ([ $A ])) (Truth_StructuralDeduction $T))) (= (|- ((M --> ([ $A $B ])) $T)) ((M --> ([ $B ])) (Truth_StructuralDeduction $T))) ;;!Extensional and intensional intersection decomposition: (= (|- ((($S | $P) --> $M) $T)) (($S --> $M) (Truth_StructuralDeduction $T))) (= (|- (($M --> ($S & $P)) $T)) (($M --> $S) (Truth_StructuralDeduction $T))) (= (|- ((($S | $P) --> $M) $T)) (($P --> $M) (Truth_StructuralDeduction $T))) (= (|- (($M --> ($S & $P)) $T)) (($M --> $P) (Truth_StructuralDeduction $T))) (= (|- ((($A ~ $S) --> $M) $T)) (($A --> $M) (Truth_StructuralDeduction $T))) (= (|- (($M --> ($B - $S)) $T)) (($M --> $B) (Truth_StructuralDeduction $T))) (= (|- ((($A ~ $S) --> $M) $T)) (($S --> $M) (Truth_StructuralDeductionNegated $T))) (= (|- (($M --> ($B - $S)) $T)) (($M --> $S) (Truth_StructuralDeductionNegated $T))) ;;!Extensional and intensional intersection composition: (sets via reductions) (= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P | $S) --> $M) (Truth_Intersection $T1 $T2))) (= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P & $S) --> $M) (Truth_Union $T1 $T2))) (= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P ~ $S) --> $M) (Truth_Difference $T1 $T2))) (= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P & $S)) (Truth_Intersection $T1 $T2))) (= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P | $S)) (Truth_Union $T1 $T2))) (= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P - $S)) (Truth_Difference $T1 $T2))) ;;!Extensional and intensional intersection decomposition: (= (|- (($S --> $M) $T1) ((($S | $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposePNN $T1 $T2))) (= (|- (($P --> $M) $T1) ((($S | $P) --> $M) $T2)) (($S --> $M) (Truth_DecomposePNN $T1 $T2))) (= (|- (($S --> $M) $T1) ((($S & $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposeNPP $T1 $T2))) (= (|- (($P --> $M) $T1) ((($S & $P) --> $M) $T2)) (($S --> $M) (Truth_DecomposeNPP $T1 $T2))) (= (|- (($S --> $M) $T1) ((($S ~ $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposePNP $T1 $T2))) (= (|- (($S --> $M) $T1) ((($P ~ $S) --> $M) $T2)) (($P --> $M) (Truth_DecomposeNNN $T1 $T2))) (= (|- (($M --> $S) $T1) (($M --> ($S & $P)) $T2)) (($M --> $P) (Truth_DecomposePNN $T1 $T2))) (= (|- (($M --> $P) $T1) (($M --> ($S & $P)) $T2)) (($M --> $S) (Truth_DecomposePNN $T1 $T2))) (= (|- (($M --> $S) $T1) (($M --> ($S | $P)) $T2)) (($M --> $P) (Truth_DecomposeNPP $T1 $T2))) (= (|- (($M --> $P) $T1) (($M --> ($S | $P)) $T2)) (($M --> $S) (Truth_DecomposeNPP $T1 $T2))) (= (|- (($M --> $S) $T1) (($M --> ($S - $P)) $T2)) (($M --> $P) (Truth_DecomposePNP $T1 $T2))) (= (|- (($M --> $S) $T1) (($M --> ($P - $S)) $T2)) (($M --> $P) (Truth_DecomposeNNN $T1 $T2))) ;; NAL-4 ;;!Transformation rules between product and image: (= (|- ((($A * $B) --> $R) $T)) (($A --> ($R /1 $B)) (Truth_StructuralIntersection $T))) (= (|- ((($A * $B) --> $R) $T)) (($B --> ($R /2 $A)) (Truth_StructuralIntersection $T))) (= (|- (($R --> ($A * $B)) $T)) ((($R \1 $B) --> $A) (Truth_StructuralIntersection $T))) (= (|- (($R --> ($A * $B)) $T)) ((($R \2 $A) --> $B) (Truth_StructuralIntersection $T))) ;;other direction of same rules (as these are bi-directional) (= (|- (($A --> ($R /1 $B)) $T)) ((($A * $B) --> $R) (Truth_StructuralIntersection $T))) (= (|- (($B --> ($R /2 $A)) $T)) ((($A * $B) --> $R) (Truth_StructuralIntersection $T))) (= (|- ((($R \1 $B) --> $A) $T)) (($R --> ($A * $B)) (Truth_StructuralIntersection $T))) (= (|- ((($R \2 $A) --> $B) $T)) (($R --> ($A * $B)) (Truth_StructuralIntersection $T))) ;;!Comparative relations (= (|- ((({ $R }) |-> ([ $P ])) $T1) ((({ $S }) |-> ([ $P ])) $T2)) (((({ $R }) * ({ $S })) --> (>>> $P )) (Truth_FrequencyGreater $T1 $T2))) (= (|- ((($A * $B) --> (>>> $P)) $T1) ((($B * $C) --> (>>> $P)) $T2)) ((($A * $C) --> (>>> $P)) (Truth_Deduction $T1 $T2))) (= (|- ((({ $R }) |-> ([ $P ])) $T1) ((({ $S }) |-> ([ $P ])) $T2)) (((({ $R }) * ({ $S })) --> (=== $P)) (Truth_FrequencyEqual $T1 $T2))) (= (|- ((($A * $B) --> (=== $P)) $T1) ((($B * $C) --> (=== $P)) $T2)) ((($A * $C) --> (=== $P)) (Truth_Deduction $T1 $T2))) (= (|- ((($A * $B) --> (=== $P)) $T)) ((($B * $A) --> (=== $P)) (Truth_StructuralIntersection $T))) ;;!Optional rules for more efficient reasoning about relation components: (= (|- ((($A * $B) --> $R) $T1) ((($C * $B) --> $R) $T2)) (($C --> $A) (Truth_Abduction $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) ((($A * $C) --> $R) $T2)) (($C --> $B) (Truth_Abduction $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($R --> ($C * $B)) $T2)) (($C --> $A) (Truth_Induction $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($R --> ($A * $C)) $T2)) (($C --> $B) (Truth_Induction $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) (($C --> $A) $T2)) ((($C * $B) --> $R) (Truth_Deduction $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) (($A --> $C) $T2)) ((($C * $B) --> $R) (Truth_Induction $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) (($C <-> $A) $T2)) ((($C * $B) --> $R) (Truth_Analogy $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) (($C --> $B) $T2)) ((($A * $C) --> $R) (Truth_Deduction $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) (($B --> $C) $T2)) ((($A * $C) --> $R) (Truth_Induction $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) (($C <-> $B) $T2)) ((($A * $C) --> $R) (Truth_Analogy $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($A --> $C) $T2)) (($R --> ($C * $B)) (Truth_Deduction $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($C --> $A) $T2)) (($R --> ($C * $B)) (Truth_Abduction $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($C <-> $A) $T2)) (($R --> ($C * $B)) (Truth_Analogy $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($B --> $C) $T2)) (($R --> ($A * $C)) (Truth_Deduction $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($C --> $B) $T2)) (($R --> ($A * $C)) (Truth_Abduction $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($C <-> $B) $T2)) (($R --> ($A * $C)) (Truth_Analogy $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) ((($C * $B) --> $R) $T2)) (($A <-> $C) (Truth_Comparison $T1 $T2))) (= (|- ((($A * $B) --> $R) $T1) ((($A * $C) --> $R) $T2)) (($B <-> $C) (Truth_Comparison $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($R --> ($C * $B)) $T2)) (($A <-> $C) (Truth_Comparison $T1 $T2))) (= (|- (($R --> ($A * $B)) $T1) (($R --> ($A * $C)) $T2)) (($B <-> $C) (Truth_Comparison $T1 $T2))) ;;NAL-5 ;;!Negation conjunction and disjunction decomposition: (= (|- ((! $A) $T)) ($A (Truth_Negation $T))) (= (|- (($A && $B) $T)) ($A (Truth_StructuralDeduction $T))) (= (|- (($A && $B) $T)) ($B (Truth_StructuralDeduction $T))) (= (|- (($A && $B) $T)) (($B && $A) (Truth_StructuralIntersection $T))) (= (|- ($S $T1) (($S && $A) $T2)) ($A (Truth_DecomposePNN $T1 $T2))) (= (|- ($S $T1) (($S || $A) $T2)) ($A (Truth_DecomposeNPP $T1 $T2))) (= (|- ($S $T1) (((! $S) && $A) $T2)) ($A (Truth_DecomposeNNN $T1 $T2))) (= (|- ($S $T1) (((! $S) || $A) $T2)) ($A (Truth_DecomposePPP $T1 $T2))) ;;!Syllogistic rules for Implication: (= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($A ==> $C) (Truth_Deduction $T1 $T2))) (= (|- (($A ==> $B) $T1) (($A ==> $C) $T2)) (($C ==> $B) (Truth_Induction $T1 $T2))) (= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) (($B ==> $A) (Truth_Abduction $T1 $T2))) (= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($C ==> $A) (Truth_Exemplification $T1 $T2))) ;;!Conditional composition for conjunction and disjunction: (= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) ((($A && $B) ==> $C) (Truth_Union $T1 $T2))) (= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) ((($A || $B) ==> $C) (Truth_Intersection $T1 $T2))) (= (|- (($C ==> $A) $T1) (($C ==> $B) $T2)) (($C ==> ($A && $B)) (Truth_Intersection $T1 $T2))) (= (|- (($C ==> $A) $T1) (($C ==> $B) $T2)) (($C ==> ($A || $B)) (Truth_Union $T1 $T2))) ;;!Multi-conditional inference: (= (|- ((($S && $P) ==> $M) $T1) (($S ==> $M) $T2)) ($P (Truth_Abduction $T1 $T2))) (= (|- ((($C && $M) ==> $P) $T1) (($S ==> $M) $T2)) ((($C && $S) ==> $P) (Truth_Deduction $T1 $T2))) (= (|- ((($C && $P) ==> $M) $T1) ((($C && $S) ==> $M) $T2)) (($S ==> $P) (Truth_Abduction $T1 $T2))) (= (|- ((($C && $M) ==> $P) $T1) (($M ==> $S) $T2)) ((($C && $S) ==> $P) (Truth_Induction $T1 $T2))) ;;!Rules for equivalence: (= (|- (($S <=> $P) $T)) (($P <=> $S) (Truth_StructuralIntersection $T))) (= (|- (($S ==> $P) $T1) (($P ==> $S) $T2)) (($S <=> $P) (Truth_Intersection $T1 $T2))) (= (|- (($P ==> $M) $T1) (($S ==> $M) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2))) (= (|- (($M ==> $P) $T1) (($M ==> $S) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2))) (= (|- (($M ==> $P) $T1) (($S <=> $M) $T2)) (($S ==> $P) (Truth_Analogy $T1 $T2))) (= (|- (($P ==> $M) $T1) (($S <=> $M) $T2)) (($P ==> $S) (Truth_Analogy $T1 $T2))) (= (|- (($M <=> $P) $T1) (($S <=> $M) $T2)) (($S <=> $P) (Truth_Resemblance $T1 $T2))) ;;!Higher-order decomposition (= (|- ($A $T1) (($A ==> $B) $T2)) ($B (Truth_Deduction $T1 $T2))) (= (|- ($A $T1) ((($A && $B) ==> $C) $T2)) (($B ==> $C) (Truth_Deduction $T1 $T2))) (= (|- ($B $T1) (($A ==> $B) $T2)) ($A (Truth_Abduction $T1 $T2))) (= (|- ($A $T1) (($A <=> $B) $T2)) ($B (Truth_Analogy $T1 $T2))) ;;NAL term reductions ;;!Extensional intersection, union, conjunction reductions: (= ($A & $A) $A) (= ($A | $A) $A) (= ($A && $A) $A) (= ($A || $A) $A) ;;!Extensional set reductions: (= (({ $A }) | ({ $B })) ({ $A $B })) (= (({ $A $B }) | ({ $C })) ({ ($A . $B) $C })) (= (({ $C }) | ({ $A $B }) ) ({ $C ($A . $B) })) ;;!Intensional set reductions: (= (([ $A ]) & ([ $B ])) ([ $A $B ]) ) (= (([ $A $B ]) & ([ $C ])) ([ ($A . $B) $C ])) (= (([ $A ]) & ([ $B $C ])) ([ $A ($B . $C) ])) ;;!Reduction for set element copula: (= ({ ( $A . $B ) }) ({ $A $B })) (= ([ ( $A . $B ) ]) ([ $A $B ])) ;params (= (BeliefEventsMax) 10) (= (GoalEventsMax) 10) ;spaces !(bind! &belief_events (new-space)) !(bind! &goal_events (new-space)) ;states !(bind! ¤tTime (new-state 1)) !(bind! &evidentialBase (new-state 1)) (= (increment $atom) (change-state! $atom (+ 1 (get-state $atom)))) (= (UpdateReasonerState) ((increment ¤tTime) (increment &evidentialBase))) (= (GetReasonerState) ((get-state ¤tTime) ((get-state &evidentialBase)))) ;priority of events (= (EventPriorityNow ($T $P) $t) (* $P (/ 1 (+ 1 (- $t $T))))) ;retrieve the best candidate (allows to use tuples / collapse results / spaces as a PQ) !(bind! &tempbest (new-state Nil)) !(bind! &tempbestscore (new-state 0)) (= (BestCandidate $tuple $evaluateCandidateFunction $t) (sequential ((do (change-state! &tempbestscore 0)) (do (change-state! &tempbest Nil)) (do (let* (($x (superpose $tuple)) ($fx ($evaluateCandidateFunction $x $t))) (superpose ((If (> $fx (get-state &tempbestscore)) (sequential ((change-state! &tempbest $x) (change-state! &tempbestscore $fx)))))))) (get-state &tempbest)))) ;functions to select highest-priority events in belief and goal PQ (= (PriorityOf (Event $Sentence ($occT $Ev $Prio)) $t) (EventPriorityNow $Prio $t)) (= (SelectHighestPriorityEvent $collection $t) (BestCandidate (collapse (get-atoms $collection)) PriorityOf $t)) ;a belief event to process, which demands adding it to the PQ and updating its concept (= (ProcessBeliefEvent $Ev $t) (sequential ((add-atom &belief_events $Ev) (UpdateConcept $Ev $t)))) ;bound the size of the attentional focus for tasks / events (= (BoundEvents $collection $Threshold $Increment $TargetAmount $t) (sequential ((do (let* (($Ev (get-atoms $collection)) ((Event $Sentence ($Time $Evidence $EPrio)) $Ev)) (If (< (EventPriorityNow $EPrio $t) $Threshold) (remove-atom $collection $Ev)))) (let $CurrentAmount (CollapseCardinality (get-atoms $collection)) (If (> $CurrentAmount $TargetAmount) (BoundEvents $collection (+ $Threshold $Increment) $Increment $TargetAmount $t)))))) ;params (= (AttentionalFocusConceptsMax) 10) ;spaces !(bind! &concepts (new-space)) !(bind! &attentional_focus (new-space)) ;priority of concepts (= (ConceptPriorityNow ($T $P) $t) (* $P (/ 1 (+ 1 (- $t $T))))) ;whether evidence was just counted once !(bind! &tempstate (new-state False)) !(bind! &tempset (new-space)) (= (StampDisjoint $x) (not (sequential ((do (change-state! &tempstate False)) (do (case (get-atoms &tempset) (($y (remove-atom &tempset $y))))) (do (let $z (superpose $x) (case (match &tempset $z $z) (($w (change-state! &tempstate True)) (%void% (add-atom &tempset $z)))))) (get-state &tempstate))))) ;revise if there is no evidential overlap, else use higher-confident candidate (= (RevisionAndChoice (Event ($Term1 ($f1 $c1)) (eternal $ev1 $EPrio1)) (Event ($Term2 ($f2 $c2)) (eternal $ev2 $EPrio2))) (let $ConclusionStamp (TupleConcat $ev1 $ev2) (If (StampDisjoint $ConclusionStamp) (Event ($Term1 (Truth_Revision ($f1 $c1) ($f2 $c2))) (eternal $ConclusionStamp (0 0.0))) (If (> $c1 $c2) (Event ($Term1 ($f1 $c1)) (eternal $ev1 (0 0.0))) (Event ($Term2 ($f2 $c2)) (eternal $ev2 (0 0.0))))))) ;;update beliefs in existing concept with the new event or create new concept to enter the new evidence (= (UpdateConcept $NewEvent $t) (let* (((Event ($Term $TV) ($Time $Evidence $EPrio)) $NewEvent) ($NewEventEternalized (Eternalize $NewEvent)) ($MatchConcept (Concept $Term $Belief $BeliefEvent $CPrio))) (sequential ((case (match &attentional_focus $MatchConcept $MatchConcept) (($MatchConcept (sequential ((remove-atom &attentional_focus $MatchConcept) (let* (($RevisedBelief (RevisionAndChoice $Belief $NewEventEternalized)) ($MaxPrio (If (> (EventPriorityNow $EPrio $t) (ConceptPriorityNow $CPrio $t)) $EPrio $CPrio))) (add-atom &attentional_focus (Concept $Term $RevisedBelief $NewEvent $MaxPrio)))))) (%void% (case (match &concepts $MatchConcept $MatchConcept) (($MatchConcept (sequential ((remove-atom &concepts $MatchConcept) (add-atom &attentional_focus $MatchConcept) (UpdateConcept $NewEvent $t)))) (%void% (add-atom &attentional_focus (Concept $Term $NewEventEternalized $NewEvent $EPrio)))))))))))) ;bound the size of attentional focus of concepts (= (BoundAttention $Threshold $Increment $TargetAmount $t) (sequential ((do (let* (($C (get-atoms &attentional_focus)) ((Concept $Term (Event $Sentence $Metadata) $BeliefEvent $CPrio) $C)) (If (< (ConceptPriorityNow $CPrio $t) $Threshold) (sequential ((remove-atom &attentional_focus $C) (add-atom &concepts $C)))))) (let $CurrentAmount (CollapseCardinality (get-atoms &attentional_focus)) (If (> $CurrentAmount $TargetAmount) (BoundAttention (+ $Threshold $Increment) $Increment $TargetAmount $t)))))) ;get eternal belief of concept (: EternalQuestion (-> Expression $t)) (= (EternalQuestion $Term) (case (match (superpose (&attentional_focus &concepts)) (Concept $Term $Belief $BeliefEvent $CPrio) $Belief) (($Ev $Ev) (%void% (Event (None (0.5 0.0)) (eternal Nil 0.0)))))) ;get event belief of concept (: EventQuestion (-> Expression $t)) (= (EventQuestion $Term) (case (match (superpose (&attentional_focus &concepts)) (Concept $Term $Belief $BeliefEvent $CPrio) $BeliefEvent) (($Ev $Ev) (%void% (Event (None (0.5 0.0)) (0 Nil 0.0)))))) ;;Declarative inference (deriving events and knowledge from observed events) ;Derived belief event priority (= (ConclusionPriority $EPrio $CPrio $ConcTV) (* (* $EPrio $CPrio) (Truth_Expectation $ConcTV))) ;making declarative inferences on two events (task from PQ and belief from concept) (= (Conclude (Event $S1 ($time1 $ev1 $prio1)) (Event $S2 ($time2 $ev2 $prio2)) $CPrio $t) (let $ConclusionStamp (TupleConcat $ev1 $ev2) (If (StampDisjoint $ConclusionStamp) (let ($ConcTerm $ConcTV) (superpose ((|- $S1 $S2) (|- $S2 $S1))) (Event ($ConcTerm $ConcTV) ($time1 $ConclusionStamp ($t (ConclusionPriority (EventPriorityNow $prio1 $t) (ConceptPriorityNow $CPrio $t) $ConcTV)))))))) ;find a belief for the task to generate conclusions with (= (ReasonWithTask (Event $S1 ($time1 $ev1 $prio1)) $t) (let ($Belief $CPrio) (case (get-atoms &attentional_focus) (((Concept $Term (Event $SE2 ($timeE2 $evE2 $prioE2)) (Event $S2 ($time2 $ev2 $prio2)) $CPrio) (If (and (not (== $time1 eternal)) (> (abs (- $time1 $time2)) 20)) ((Event $SE2 ($timeE2 $evE2 $prioE2)) $Cprio) ((Event $S2 ($time2 $ev2 $prio2)) $CPrio))))) (case (Conclude (Event $S1 ($time1 $ev1 $prio1)) (TemporallyAlignedBelief $time1 $Belief) $CPrio $t) (((Event $1 $2) (ProcessBeliefEvent (Event $1 $2) $t)))))) ;select the highest priority belief event from the PQ and use it for reasoning (= (BeliefCycle $t) (do (sequential ((let $Ev (SelectHighestPriorityEvent &belief_events $t) (sequential ((remove-atom &belief_events $Ev) (ReasonWithTask $Ev $t)))) (UpdateReasonerState) (BoundEvents &belief_events 0.0 0.1 (BeliefEventsMax) $t) (BoundAttention 0.0 0.1 (AttentionalFocusConceptsMax) $t))))) ;;Temporal inference (sequence and implication formation based on FIFO) ;use the event's evidence to induce a time-independent belief which can be used in the future (= (Eternalize $Ev) (let (Event ($Term $TV) ($Time $Evidence $EPrio)) $Ev (If (== $Time eternal) $Ev (Event ($Term (Truth_Eternalize $TV)) (eternal $Evidence (0 0.0)))))) ;use evidence of an event at a slightly different moment in time (= (Projection (Event ($Term ($f $c)) ($Time $Evidence $EPrio)) $TargetTime) (Event ($Term ($f (* $c (min 1 (/ 1 (abs (- $Time $TargetTime))))))) ($TargetTime $Evidence $EPrio))) ;make the belief occurrence time compatible with the task's (= (TemporallyAlignedBelief $TaskTime $Belief) (If (== $TaskTime eternal) (Eternalize $Belief) (Projection $Belief $TaskTime))) ;FIFO max. size bound !(bind! &FIFO (new-state Nil)) (= (ListFirstK $C Nil) Nil) (= (ListFirstK $C (Cons $LH $LT)) (If (> $C 0) (Cons $LH (ListFirstK (- $C 1) $LT)) Nil)) ;Add event to FIFO (= (EventToFIFO $Ev) (let $newlist (ListFirstK 3 (Cons $Ev (get-state &FIFO))) (change-state! &FIFO $newlist))) ;Form a sequence of two events (= (TemporalSequence $Ev1 (Event ($Term2 $Truth2) ($Time2 $Evidence2 $EPrio2))) (let (Event ($Term1 $Truth1) ($Time1 $Evidence1 $EPrio1)) (Projection $Ev1 $Time2) (Event (($Term1 &/ $Term2) (Truth_Intersection $Truth1 $Truth2)) ($Time2 (TupleConcat $Evidence1 $Evidence2) (0 0.0))))) ;Form a temporal implication between two events (= (TemporalImplication $Ev1 (Event ($Term2 $Truth2) ($Time2 $Evidence2 $EPrio2))) (let (Event ($Term1 $Truth1) ($Time1 $Evidence1 $EPrio1)) (Projection $Ev1 $Time2) (Event (($Term1 =/> $Term2) (Truth_Induction $Truth1 $Truth2)) ($Time2 (TupleConcat $Evidence1 $Evidence2) (0 0.0))))) ;Whether an event's term is an operation (= (IsOp (Event ($Term $Truth) $Metadata)) (case $Term (((^ $Opname) True) ($Otherwise False)))) ;Find implications in the event FIFO: ;procedural implications (= (TemporalImplicationInduction (Cons $Cons (Cons $Op (Cons $Prec $Tail)))) (If (and (IsOp $Op) (and (not (IsOp $Cons)) (not (IsOp $Prec)))) (let $PrecOp (TemporalSequence $Prec $Op) (TemporalImplication $PrecOp $Cons)))) ;and temporal without operation (= (TemporalImplicationInduction (Cons $Cons (Cons $Prec $Tail))) (If (and (not (IsOp $Prec)) (not (IsOp $Cons))) (TemporalImplication $Prec $Cons))) ;Add negative evidence for implications which predicted the input unsuccessfully (= (NegConfirmation $PrecTerm $ObservedCons $t) (let (Event (($PrecTerm =/> $PredictedCons) $ImpTV) $ImpMetadata) (EternalQuestion ($PrecTerm =/> $PredictedCons)) (If (not (== $ObservedCons $PredictedCons)) (UpdateConcept (Event (($PrecTerm =/> $PredictedCons) (0.0 0.1)) ($t () (0 0.0))) $t)))) ;Check if the implication's preconditions are met to anticipate the by the implication predicted outcome (= (Anticipate (Cons $Pos Nil) $t)) (= (Anticipate (Cons $Pos (Cons $Pre Nil)) $t) (let* (((Event ($PreTerm $PreTV) $PreMetadata) $Pre) ((Event ($PosTerm $PosTV) $PosMetadata) $Pos)) (If (not (IsOp $Pre)) (NegConfirmation $PreTerm $PosTerm $t)))) (= (Anticipate (Cons $Pos (Cons $Op (Cons $Pre $Trail))) $t) (let* (((Event ($PreTerm $PreTV) $PreMetadata) $Pre) ((Event ($OpTerm $OpTV) $OpMetadata) $Op) ((Event ($PosTerm $PosTV) $PosMetadata) $Pos) ($Sequence ($Pre &/ Pos))) (If (and (IsOp $Op) (not (IsOp $Pre))) (NegConfirmation ($PreTerm &/ $OpTerm) $PosTerm $t)))) ;;Input procedure (= (AddBeliefEvent $Sentence) (let* ((($t $evidentialBase) (GetReasonerState)) ($InputEvent (Event $Sentence ($t $evidentialBase ($t 1.0))))) (do (sequential ((EventToFIFO $InputEvent) (let $InducedHypothesis (TemporalImplicationInduction (get-state &FIFO)) (UpdateConcept $InducedHypothesis $t)) (ProcessBeliefEvent $InputEvent $t) (Anticipate (get-state &FIFO) $t) (BeliefCycle $t)))))) ;; Alternate implication direct introduction formula assuming Boolean ;; evidence. Base case, meaning there is only one piece of evidence. (: direct-introduction-base-formula (-> Bool Bool TruthValue)) (= (direct-introduction-base-formula False $_) (STV 1 0)) (= (direct-introduction-base-formula True $qa) (STV (bool->number $qa) (count->confidence 1))) ;; Alternate implication direct introduction formula. Inductive case, ;; meaning the piece of evidence gets aggregated to another truth ;; value. (: direct-introduction-recursive-formula (-> Bool Bool TruthValue TruthValue)) (= (direct-introduction-recursive-formula False $_ (STV $PQs $PQc)) (STV $PQs $PQc)) (= (direct-introduction-recursive-formula True False (STV $PQs $PQc)) (STV (inc-count-strength $PQs $PQc) (inc-confidence $PQc))) (= (direct-introduction-recursive-formula True True (STV $PQs $PQc)) (STV $PQs (inc-confidence $PQc))) (= (modus-ponens-formula ($As $Ac) ($ABs $ABc)) (let* (($notABs 0.2) ; temporary hack ($notABc 1)) ( (+ (* $ABs $As) (* $notABs (- 1 $As))) (min (min $ABc $notABc) $Ac)))) ;; Define modus ponens rule (: modus-ponens-rule (-> Atom)) (= (modus-ponens-rule) (: ModusPonens (-> (≞ $a $atv) (≞ (→ $a $b) $abtv) (≞ $b (modus-ponens-formula $atv $abtv))))) ;;Procedural inference (decision making with operation execution and subgoaling) ;Derived goal event priority (= (SubgoalPriority $EPrio $ConcTV) (* $EPrio (Truth_Expectation $ConcTV))) ;Expectation of an operation is the truth expectation of its desire value (= (OpExpectation (Decision ($Opname $DVOp) $Subgoal) $t) (Truth_Expectation $DVOp)) ;Inject executed operation as an event and return its name (= (Execute $Opname) (superpose ((AddBeliefEvent ($Opname (1.0 0.9))) $Opname))) ;Add subgoals to the PQ (= (DeriveSubgoals $Options) (do (let (Decision $Op $Subgoal) (superpose $Options) (add-atom &goal_events $Subgoal)))) ;execute the operation which most likely gets the goal achieved in current contexts, and if contexts are not yet fulfilled, derive them as subgoals (= (BestDecision $t (Event ($Term $DV) ($GoalTime $GoalEvBase $GoalPrio)) $FIFO) (let $Options (collapse (let* (((Event ((($Prec &/ (^ $Op)) =/> $Term) $ImpTV) ($ImpTime $ImpEvBase $ImpPrio)) (EternalQuestion (($Prec &/ (^ $Op)) =/> $Term))) ($DVPrecOp (modus-ponens-formula $DV $ImpTV)) ((Event ($PrecTerm $PrecTV) $PrecMetadata) (Projection (EventQuestion $Prec) $t)) ($DVOp (modus-ponens-formula $PrecTV $DVPrecOp)) ($DVPrec (Truth_StructuralDeduction $DVPrecOp)) ($SubgoalStamp (TupleConcat $GoalEvBase $ImpEvBase))) (If (StampDisjoint $SubgoalStamp) (Decision ((^ $Op) $DVOp) (Event ($Prec (Truth_StructuralDeduction $DVPrecOp)) ($t $SubgoalStamp ($t (SubgoalPriority (EventPriorityNow $GoalPrio $t) $DVPrec)))))))) (let (Decision ($Opname $DVOp) $Subgoal) (BestCandidate $Options OpExpectation $t) (If (> (Truth_Expectation $DVOp) 0.5) (Execute $Opname) (DeriveSubgoals $Options))))) ;;select the highest priority goal event from the PQ and use it for decision making (= (GoalCycle $t) (sequential ((let $Ev (SelectHighestPriorityEvent &goal_events $t) (sequential ((do (remove-atom &goal_events $Ev)) (BestDecision $t $Ev (get-state &FIFO))))) (do (UpdateReasonerState)) (do (BoundEvents &goal_events 0.0 0.1 (GoalEventsMax) $t))))) ;;Input procedure (= (AddGoalEvent $Sentence) (let* ((($t $evidentialBase) (GetReasonerState)) ($InputEvent (Event $Sentence ($t $evidentialBase ($t 1.0))))) (sequential ((do (add-atom &goal_events $InputEvent)) (GoalCycle $t))))) ;;NARS test !(AddBeliefEvent ((({ garfield }) --> cat) (1.0 0.9))) !(AddBeliefEvent (((cat * sky) --> like) (1.0 0.9))) !(AddBeliefEvent ((sky --> ([ blue ])) (1.0 0.9))) ;The following question needs both a deduction and abduction step: !(EternalQuestion ((({ garfield }) * ([ blue ])) --> like)) ;expected: [(Event (((({ garfield }) * ([ blue ])) --> like) (1.0 0.2965825874694874)) (eternal (Cons 2 (Cons 1 (Cons 3 Nil))) 0.643288027761712))] ;Lets stress the control mechanism as these type of events with common extension or intension causes dozens of derivations: !(AddBeliefEvent ((A --> cat) (1.0 0.9))) !(AddBeliefEvent ((B --> cat) (1.0 0.9))) !(AddBeliefEvent ((C --> cat) (1.0 0.9))) !(EternalQuestion ((A & B) --> cat)) ;expected: [(Event (((A & B) --> cat) (1.0 0.44751381215469616)) (eternal (Cons 4 (Cons 5 Nil)) (5 0.4525)))] !(EternalQuestion ((B & C) --> cat)) ;expected: [(Event (((B & C) --> cat) (1.0 0.44751381215469616)) (eternal (Cons 5 (Cons 6 Nil)) (6 0.4525)))] !(EternalQuestion (((A & B) & C) --> cat)) ;expected: [(Event ((((A & B) & C) --> cat) (1.0 0.42163100057836905)) (eternal (Cons 5 (Cons 4 (Cons 6 Nil))) (6 0.195593125))) !(AddBeliefEvent (((({ garfield }) * ([ blue ])) --> like) (1.0 0.9))) !(EternalQuestion ((({ garfield }) * ([ blue ])) --> like)) ;expected: [(Event (((({ garfield }) * ([ blue ])) --> like) (1.0 0.5692683291397822)) (eternal (Cons 7 (Cons 2 (Cons 1 (Cons 3 Nil)))) 0.0))] ;Please notice that it has revised it with the prior derived result, as you can also see in the evidence trail 1,2,3 being included ;debug: !(CollapseCardinality (get-atoms &belief_events)) ;[8] !(CollapseCardinality (get-atoms &attentional_focus)) ;[8] !(CollapseCardinality (get-atoms &concepts)) ;[100]