; ; generated: 19 November 1989 ; ; option(s): ; ; ; ; chat_parser ; ; ; ; Fernando C. N. Pereira and David H. D. Warren (= (top) (chat-parser)) (= (go) ( (statistics runtime (:: $_ $_)) (chat-parser) (statistics runtime (:: $_ $T)) (write 'execution time is ') (write $T) (write milliseconds))) (= (chat-parser) (not (, (my-string $X) (not (determinate-say $X $Y))))) ; ; original code used a failure-driven loop; changed to use unrolled ; ; forall/2 so that unexpected failures will make chat_parser/0 fail ; ; query set (= (my_string (what rivers are there ?)) True) (= (my_string (does afghanistan border china ?)) True) (= (my_string (what is the capital of upper_volta ?)) True) (= (my_string (where is the largest country ?)) True) (= (my_string (which country ~ s capital is london ?)) True) (= (my_string (which countries are european ?)) True) (= (my_string (how large is the smallest american country ?)) True) (= (my_string (what is the ocean that borders african countries and that borders asian countries ?)) True) (= (my_string (what are the capitals of the countries bordering the baltic ?)) True) (= (my_string (which countries are bordered by two seas ?)) True) (= (my_string (how many countries does the danube flow through ?)) True) (= (my_string (what is the total area of countries south of the equator and not in australasia ?)) True) (= (my_string (what is the average area of the countries in each continent ?)) True) (= (my_string (is there more than one country in each continent ?)) True) (= (my_string (is there some ocean that does not border any country ?)) True) (= (my_string (what are the countries from which a river flows into the black_sea ?)) True) ; ; determinate_say (= (determinate-say $X $Y) ( (say $X $Y) (set-det))) ; ; ----------------------------------------------------------------------------- ; ; ; ; xgrun ; ; ; ; ----------------------------------------------------------------------------- (= (terminal $T $S $S (x $_ terminal $T $X) $X) True) (= (terminal $T (Cons $T $S) $S $X $X) (gap $X)) (= (gap (x gap $_ $_ $_)) True) (= (gap ()) True) (= (virtual $NT (x $_ nonterminal $NT $X) $X) True) ; ; ---------------------------------------------------------------------------- ; ; ; ; clotab ; ; ; ; ---------------------------------------------------------------------------- ; ; normal form masks (= (is_pp (# 1 $_ $_ $_)) True) (= (is_pred (# $_ 1 $_ $_)) True) (= (is_trace (# $_ $_ 1 $_)) True) (= (is_adv (# $_ $_ $_ 1)) True) (= (trace1 (# $_ $_ 1 $_) (# 0 0 0 0)) True) (= (trace1 (# 0 0 1 0)) True) (= (adv (# 0 0 0 1)) True) (= (empty (# 0 0 0 0)) True) (= (np_all (# 1 1 1 0)) True) (= (s_all (# 1 0 1 1)) True) (= (np_no_trace (# 1 1 0 0)) True) ; ; mask operations (= (myplus (# $B1 $B2 $B3 $B4) (# $C1 $C2 $C3 $C4) (# $D1 $D2 $D3 $D4)) ( (or $B1 $C1 $D1) (or $B2 $C2 $D2) (or $B3 $C3 $D3) (or $B4 $C4 $D4))) (= (minus (# $B1 $B2 $B3 $B4) (# $C1 $C2 $C3 $C4) (# $D1 $D2 $D3 $D4)) ( (anot $B1 $C1 $D1) (anot $B2 $C2 $D2) (anot $B3 $C3 $D3) (anot $B4 $C4 $D4))) (= (or 1 $_ 1) True) (= (or 0 1 1) True) (= (or 0 0 0) True) (= (anot $X 0 $X) True) (= (anot $X 1 0) True) ; ; noun phrase position features (= (role subj $_ (# 1 0 0)) True) (= (role compl $_ (# 0 $_ $_)) True) (= (role undef main (# $_ 0 $_)) True) (= (role undef aux (# 0 $_ $_)) True) (= (role undef decl $_) True) (= (role nil $_ $_) True) (= (subj_case (# 1 0 0)) True) (= (verb_case (# 0 1 0)) True) (= (prep_case (# 0 0 1)) True) (= (compl_case (# 0 $_ $_)) True) ; ; ---------------------------------------------------------------------------- ; ; ; ; newg ; ; ; ; ---------------------------------------------------------------------------- (= (say $X $Y) (sentence $Y $X Nil Nil Nil)) (= (sentence $B $C $D $E $F) ( (declarative $B $C $G $E $H) (terminator . $G $D $H $F))) (= (sentence $B $C $D $E $F) ( (wh-question $B $C $G $E $H) (terminator ? $G $D $H $F))) (= (sentence $B $C $D $E $F) ( (topic $C $G $E $H) (wh-question $B $G $I $H $J) (terminator ? $I $D $J $F))) (= (sentence $B $C $D $E $F) ( (yn-question $B $C $G $E $H) (terminator ? $G $D $H $F))) (= (sentence $B $C $D $E $F) ( (imperative $B $C $G $E $H) (terminator (set-det) $G $D $H $F))) (= (pp $B $C $D $E $F $F $G $H) (virtual (pp $B $C $D $E) $G $H)) (= (pp (pp $B $C) $D $E $F $G $H $I $J) ( (prep $B $G $K $I $L) (prep-case $M) (np $C $N $M $O $D $E $F $K $H $L $J))) (= (topic $B $C $D (x gap nonterminal (pp $E compl $F $G) $H)) ( (pp $E compl $F $G $B $I $D $J) (opt-comma $I $C $J $H))) (= (opt-comma $B $C $D $E) (~ , $B $C $D $E)) (= (opt_comma $B $B $C $C) True) (= (declarative (decl $B) $C $D $E $F) (s $B $G $C $D $E $F)) (= (wh-question (whq $B $C) $D $E $F $G) ( (variable-q $B $H $I $J $D $K $F $L) (question $I $J $C $K $E $L $G))) (= (np $B $C $D $E $F $G $H $I $I $J $K) (virtual (np $B $C $D $E $F $G $H) $J $K)) (= (np (np $B $C Nil) $B $D def $E $F $G $H $I $J $K) ( (is-pp $F) (pers-pron $C $B $L $H $I $J $K) (empty $G) (role $L decl $D))) (= (np (np $B $C $D) $B $E $F $G $H $I $J $K $L $M) ( (is-pp $H) (np-head $C $B (+ $F $N) $O $D $J $P $L $Q) (np-all $R) (np-compls $N $B $G $O $R $I $P $K $Q $M))) (= (np (part $B $C) (+ 3 $D) $E indef $F $G $H $I $J $K $L) ( (is-pp $G) (determiner $B $D indef $I $M $K $N) (~ of $M $O $N $P) (s-all $Q) (prep-case $R) (np $C (+ 3 plu) $R def $F $Q $H $O $J $P $L))) (= (variable-q $B $C $D $E $F $G $H (x gap nonterminal (np $I $C $E $J $K $L $M) $N)) ( (whq $B $C $I $D $F $G $H $N) (trace1 $L $M))) (= (variable-q $B $C compl $D $E $F $G (x gap nonterminal (pp (pp $H $I) compl $J $K) $L)) ( (prep $H $E $M $G $N) (whq $B $C $I $O $M $F $N $L) (trace1 $J $K) (compl-case $D))) (= (variable-q $B $C compl $D $E $F $G (x gap nonterminal (adv-phrase (pp $H (np $C (np-head (int-det $B) Nil $I) Nil)) $J $K) $L)) ( (context-pron $H $I $E $F $G $L) (trace1 $J $K) (verb-case $D))) (= (variable-q $B $C compl $D $E $F $G (x gap nonterminal (predicate adj (value $H (wh $B)) $I) $J)) ( (~ how $E $K $G $L) (adj quant $H $K $F $L $J) (empty $I) (verb-case $D))) (= (adv-phrase $B $C $D $E $E $F $G) (virtual (adv-phrase $B $C $D) $F $G)) (= (adv-phrase (pp $B $C) $D $E $F $G $H $I) ( (loc-pred $B $F $J $H $K) (pp (pp (prep of) $C) compl $D $E $J $G $K $I))) (= (predicate $B $C $D $E $E $F $G) (virtual (predicate $B $C $D) $F $G)) (= (predicate $B $C $D $E $F $G $H) (adj-phrase $C $D $E $F $G $H)) (= (predicate neg $B $C $D $E $F $G) ( (s-all $H) (pp $B compl $H $C $D $E $F $G))) (= (predicate $B $C $D $E $F $G $H) ( (s-all $I) (adv-phrase $C $I $D $E $F $G $H))) (= (whq $B $C $D undef $E $F $G $H) ( (int-det $B $C $E $I $G $J) (s-all $K) (np $D $C $L $M subj $K $N $I $F $J $H))) (= (whq $B (+ 3 $C) (np (+ 3 $C) (wh $B) Nil) $D $E $F $G $H) (int-pron $D $E $F $G $H)) (= (int-det $B (+ 3 $C) $D $E $F $G) (whose $B $C $D $E $F $G)) (= (int-det $B (+ 3 $C) $D $E $F $G) (int-art $B $C $D $E $F $G)) (= (gen-marker $B $B $C $D) (virtual gen-marker $C $D)) (= (gen-marker $B $C $D $E) ( (~ ~ $B $F $D $G) (an-s $F $C $G $E))) (= (whose $B $C $D $E $F (x nogap nonterminal (np-head0 (wh $B) $C proper) (x nogap nonterminal gen-marker $G))) (~ whose $D $E $F $G)) (= (question $B $C $D $E $F $G $H) ( (subj-question $B) (role subj $I $C) (s $D $J $E $F $G $H))) (= (question $B $C $D $E $F $G $H) ( (fronted-verb $B $C $E $I $G $J) (s $D $K $I $F $J $H))) (= (det $B $C $D $E $E $F $G) (virtual (det $B $C $D) $F $G)) (= (det (det $B) $C $D $E $F $G $H) ( (terminal $I $E $F $G $H) (det $I $C $B $D))) (= (det generic $B generic $C $C $D $D) True) (= (int-art $B $C $D $E $F (x nogap nonterminal (det $G $C def) $H)) (int-art $B $C $G $D $E $F $H)) (= (subj_question subj) True) (= (subj_question undef) True) (= (yn-question (q $B) $C $D $E $F) ( (fronted-verb nil $G $C $H $E $I) (s $B $J $H $D $I $F))) (= (verb-form $B $C $D $E $F $F $G $H) (virtual (verb-form $B $C $D $E) $G $H)) (= (verb-form $B $C $D $E $F $G $H $I) ( (terminal $J $F $G $H $I) (verb-form $J $B $C $D))) (= (neg $B $C $D $D $E $F) (virtual (neg $B $C) $E $F)) (= (neg (+ aux $B) neg $C $D $E $F) (~ not $C $D $E $F)) (= (neg $B pos $C $C $D $D) True) (= (fronted-verb $B $C $D $E $F (x gap nonterminal (verb-form $G $H $I $J) (x nogap nonterminal (neg $K $L) $M))) ( (verb-form $G $H $I $N $D $O $F $P) (verb-type $G (+ aux $Q)) (role $B $J $C) (neg $R $L $O $E $P $M))) (= (imperative (imp $B) $C $D $E $F) ( (imperative-verb $C $G $E $H) (s $B $I $G $D $H $F))) (= (imperative-verb $B $C $D (x nogap terminal you (x nogap nonterminal (verb-form $E (+ imp fin) (+ 2 sin) main) $F))) (verb-form $E inf $G $H $B $C $D $F)) (= (s (s $B $C $D $E) $F $G $H $I $J) ( (subj $B $K $L $G $M $I $N) (verb $C $K $L $O $M $P $N $Q) (empty $R) (s-all $S) (verb-args $L $O $D $R $T $P $U $Q $V) (minus $S $T $W) (myplus $S $T $X) (verb-mods $E $W $X $F $U $H $V $J))) (= (subj there $B (+ $C be) $D $E $F $G) (~ there $D $E $F $G)) (= (subj $B $C $D $E $F $G $H) ( (s-all $I) (subj-case $J) (np $B $C $J $K subj $I $L $E $F $G $H))) (= (np-head $B $C $D $E $F $G $H $I $J) ( (np-head0 $K $L $M $G $N $I $O) (possessive $K $L $M $P $P $B $C $D $E $F $N $H $O $J))) (= (np-head0 $B $C $D $E $E $F $G) (virtual (np-head0 $B $C $D) $F $G)) (= (np-head0 (name $B) (+ 3 sin) (+ def proper) $C $D $E $F) (name $B $C $D $E $F)) (= (np-head0 (np-head $B $C $D) (+ 3 $E) (+ $F common) $G $H $I $J) ( (determiner $B $E $F $G $K $I $L) (adjs $C $K $M $L $N) (noun $D $E $M $H $N $J))) (= (np-head0 $B $C (+ def proper) $D $E $F (x nogap nonterminal gen-marker $G)) (poss-pron $B $C $D $E $F $G)) (= (np-head0 (np-head $B Nil $C) (+ 3 sin) (+ indef common) $D $E $F $G) (quantifier-pron $B $C $D $E $F $G)) (= (np-compls proper $B $C Nil $D $E $F $F $G $G) (empty $E)) (= (np-compls common $B $C $D $E $F $G $H $I $J) ( (np-all $K) (np-mods $B $C $L $D $E $M $K $N $G $O $I $P) (relative $B $L $M $N $F $O $H $P $J))) (= (possessive $B $C $D Nil $E $F $G $H $I $J $K $L $M $N) ( (gen-case $K $O $M $P) (np-head0 $Q $R $S $O $T $P $U) (possessive $Q $R $S $V (Cons (pp poss (np $C $B $E)) $V) $F $G $H $I $J $T $L $U $N))) (= (possessive $B $C $D $E $F $B $C $D $E $F $G $G $H $H) True) (= (gen-case $B $C $D (x nogap terminal the $E)) (gen-marker $B $C $D $E)) (= (an-s $B $C $D $E) (~ s $B $C $D $E)) (= (an_s $B $B $C $C) True) (= (determiner $B $C $D $E $F $G $H) (det $B $C $D $E $F $G $H)) (= (determiner $B $C $D $E $F $G $H) (quant-phrase $B $C $D $E $F $G $H)) (= (quant-phrase (quant $B $C) $D $E $F $G $H $I) ( (quant $B $E $F $J $H $K) (number $C $D $J $G $K $I))) (= (quant $B indef $C $D $E $F) ( (neg-adv $G $B $C $H $E $I) (comp-adv $G $H $J $I $K) (~ than $J $D $K $F))) (= (quant $B indef $C $D $E $F) ( (~ at $C $G $E $H) (sup-adv $I $G $D $H $F) (sup-op $I $B))) (= (quant the def $B $C $D $E) (~ the $B $C $D $E)) (= (quant same indef $B $B $C $C) True) (= (neg-adv $B (+ not $B) $C $D $E $F) (~ not $C $D $E $F)) (= (neg_adv $B $B $C $C $D $D) True) (= (sup_op least (+ not less)) True) (= (sup_op most (+ not more)) True) (= (np-mods $B $C $D (Cons $E $F) $G $H $I $J $K $L $M $N) ( (np-mod $B $C $E $G $O $K $P $M $Q) (trace1 $R) (myplus $R $O $S) (minus $G $S $T) (myplus $O $G $U) (np-mods $B $C $D $F $T $H $U $J $P $L $Q $N))) (= (np_mods $B $C $D $D $E $E $F $F $G $G $H $H) True) (= (np-mod $B $C $D $E $F $G $H $I $J) (pp $D $C $E $F $G $H $I $J)) (= (np-mod $B $C $D $E $F $G $H $I $J) (reduced-relative $B $D $E $F $G $H $I $J)) (= (verb-mods (Cons $B $C) $D $E $F $G $H $I $J) ( (verb-mod $B $D $K $G $L $I $M) (trace1 $N) (myplus $N $K $O) (minus $D $O $P) (myplus $K $D $Q) (verb-mods $C $P $Q $F $L $H $M $J))) (= (verb_mods () $B $C $C $D $D $E $E) True) (= (verb-mod $B $C $D $E $F $G $H) (adv-phrase $B $C $D $E $F $G $H)) (= (verb-mod $B $C $D $E $F $G $H) ( (is-adv $C) (adverb $B $E $F $G $H) (empty $D))) (= (verb-mod $B $C $D $E $F $G $H) (pp $B compl $C $D $E $F $G $H)) (= (adjs (Cons $B $C) $D $E $F $G) ( (pre-adj $B $D $H $F $I) (adjs $C $H $E $I $G))) (= (adjs () $B $B $C $C) True) (= (pre-adj $B $C $D $E $F) (adj $G $B $C $D $E $F)) (= (pre-adj $B $C $D $E $F) (sup-phrase $B $C $D $E $F)) (= (sup-phrase (sup most $B) $C $D $E $F) (sup-adj $B $C $D $E $F)) (= (sup-phrase (sup $B $C) $D $E $F $G) ( (sup-adv $B $D $I $F $J) (adj quant $C $I $E $J $G))) (= (comp-phrase (comp $B $C $D) $E $F $G $H $I) ( (comp $B $C $F $J $H $K) (np-no-trace $L) (prep-case $M) (np $D $N $M $O compl $L $E $J $G $K $I))) (= (comp $B $C $D $E $F $G) ( (comp-adv $B $D $H $F $I) (adj quant $C $H $J $I $K) (~ than $J $E $K $G))) (= (comp more $B $C $D $E $F) ( (rel-adj $B $C $G $E $H) (~ than $G $D $H $F))) (= (comp same $B $C $D $E $F) ( (~ as $C $G $E $H) (adj quant $B $G $I $H $J) (~ as $I $D $J $F))) (= (relative $B (:: $C) $D $E $F $G $H $I $J) ( (is-pred $D) (rel-conj $B $K $C $F $G $H $I $J))) (= (relative $B () $C $D $D $E $E $F $F) True) (= (rel-conj $B $C $D $E $F $G $H $I) ( (rel $B $J $K $F $L $H $M) (rel-rest $B $C $J $D $K $E $L $G $M $I))) (= (rel-rest $B $C $D $E $F $G $H $I $J $K) ( (conj $C $L $D $M $E $H $N $J $O) (rel-conj $B $L $M $G $N $I $O $K))) (= (rel_rest $B $C $D $D $E $E $F $F $G $G) True) (= (rel $B (rel $C $D) $E $F $G $H $I) ( (myopen $F $J $H $K) (variable $B $C $J $L $K $M) (s $D $N $L $O $M $P) (trace1 $Q) (minus $N $Q $E) (close $O $G $P $I))) (= (variable $B $C $D $E $F (x gap nonterminal (np (np $B (wh $C) Nil) $B $G $H $I $J $K) $L)) ( (~ that $D $E $F $L) (trace1 $J $K))) (= (variable $B $C $D $E $F (x gap nonterminal (np $G $H $I $J $K $L $M) $N)) ( (wh $C $B $G $H $I $D $E $F $N) (trace1 $L $M))) (= (variable $B $C $D $E $F (x gap nonterminal (pp (pp $G $H) compl $I $J) $K)) ( (prep $G $D $L $F $M) (wh $C $B $H $N $O $L $E $M $K) (trace1 $I $J) (compl-case $O))) (= (wh $B $C (np $C (wh $B) Nil) $C $D $E $F $G $H) ( (rel-pron $I $E $F $G $H) (role $I decl $D))) (= (wh $B $C (np $D $E (:: (pp $F $G))) $D $H $I $J $K $L) ( (np-head0 $E $D (+ $M common) $I $N $K $O) (prep $F $N $P $O $Q) (wh $B $C $G $R $S $P $J $Q $L))) (= (wh $B $C $D $E $F $G $H $I $J) ( (whose $B $C $G $K $I $L) (s-all $M) (np $D $E $F def subj $M $N $K $H $L $J))) (= (reduced-relative $B $C $D $E $F $G $H $I) ( (is-pred $D) (reduced-rel-conj $B $J $C $E $F $G $H $I))) (= (reduced-rel-conj $B $C $D $E $F $G $H $I) ( (reduced-rel $B $J $K $F $L $H $M) (reduced-rel-rest $B $C $J $D $K $E $L $G $M $I))) (= (reduced-rel-rest $B $C $D $E $F $G $H $I $J $K) ( (conj $C $L $D $M $E $H $N $J $O) (reduced-rel-conj $B $L $M $G $N $I $O $K))) (= (reduced_rel_rest $B $C $D $D $E $E $F $F $G $G) True) (= (reduced-rel $B (reduced-rel $C $D) $E $F $G $H $I) ( (myopen $F $J $H $K) (reduced-wh $B $C $J $L $K $M) (s $D $N $L $O $M $P) (trace1 $Q) (minus $N $Q $E) (close $O $G $P $I))) (= (reduced-wh $B $C $D $E $F (x nogap nonterminal (np (np $B (wh $C) Nil) $B $G $H $I $J $K) (x nogap nonterminal (verb-form be (+ pres fin) $B main) (x nogap nonterminal (neg $L $M) (x nogap nonterminal (predicate $M $N $O) $P))))) ( (neg $Q $M $D $R $F $S) (predicate $M $N $O $R $E $S $P) (trace1 $J $K) (subj-case $G))) (= (reduced-wh $B $C $D $E $F (x nogap nonterminal (np (np $B (wh $C) Nil) $B $G $H $I $J $K) (x nogap nonterminal (verb $L $M $N $O) $P))) ( (participle $L $N $O $D $E $F $P) (trace1 $J $K) (subj-case $G))) (= (reduced-wh $B $C $D $E $F (x nogap nonterminal (np $G $H $I $J $K $L $M) (x gap nonterminal (np (np $B (wh $C) Nil) $B $N $O $P $Q $R) $S))) ( (s-all $T) (subj-case $I) (verb-case $N) (np $G $H $U $J subj $T $V $D $E $F $S) (trace1 $L $M) (trace1 $Q $R))) (= (verb $B $C $D $E $F $F $G $H) (virtual (verb $B $C $D $E) $G $H)) (= (verb (verb $B $C (+ $D fin) $E $F) $G $H $C $I $J $K $L) ( (verb-form $M (+ $D fin) $G $N $I $O $K $P) (verb-type $M $Q) (neg $Q $F $O $R $P $S) (rest-verb $N $M $B $C $E $R $J $S $L) (verb-type $B $H))) (= (rest-verb aux have $B $C (Cons perf $D) $E $F $G $H) ( (verb-form $I (+ past part) $J $K $E $L $G $M) (have $I $B $C $D $L $F $M $H))) (= (rest-verb aux be $B $C $D $E $F $G $H) ( (verb-form $I $J $K $L $E $M $G $N) (be $J $I $B $C $D $M $F $N $H))) (= (rest-verb aux do $B active Nil $C $D $E $F) (verb-form $B inf $G $H $C $D $E $F)) (= (rest_verb main $B $B active () $C $C $D $D) True) (= (have be $B $C $D $E $F $G $H) ( (verb-form $I $J $K $L $E $M $G $N) (be $J $I $B $C $D $M $F $N $H))) (= (have $B $B active () $C $C $D $D) True) (= (be (+ past part) $B $B passive () $C $C $D $D) True) (= (be (+ pres part) $B $C $D (:: prog) $E $F $G $H) (passive $B $C $D $E $F $G $H)) (= (passive be $B passive $C $D $E $F) ( (verb-form $B (+ past part) $G $H $C $D $E $F) (verb-type $B $I) (passive $I))) (= (passive $B $B active $C $C $D $D) True) (= (participle (verb $B $C inf $D $E) $F $C $G $H $I $J) ( (neg $K $E $G $L $I $M) (verb-form $B $N $O $P $L $H $M $J) (participle $N $C $D) (verb-type $B $F))) (= (passive (+ $B trans)) True) (= (passive (+ $B ditrans)) True) (= (participle (+ pres part) active (prog)) True) (= (participle (+ past part) passive ()) True) (= (close $B $B $C $D) (virtual close $C $D)) (= (myopen $B $B $C (x gap nonterminal close $C)) True) (= (verb-args (+ $B $C) $D $E $F $G $H $I $J $K) ( (advs $E $L $M $H $N $J $O) (verb-args $C $D $L $F $G $N $I $O $K))) (= (verb-args trans active (:: (arg dir $B)) $C $D $E $F $G $H) (verb-arg np $B $D $E $F $G $H)) (= (verb-args ditrans $B (Cons (arg $C $D) $E) $F $G $H $I $J $K) ( (verb-arg np $D $L $H $M $J $N) (object $C $E $L $G $M $I $N $K))) (= (verb-args be $B (:: void) $C $C $D $E $F $G) (terminal there $D $E $F $G)) (= (verb-args be $B (:: (arg predicate $C)) $D $E $F $G $H $I) (pred-conj $J $C $E $F $G $H $I)) (= (verb-args be $B (:: (arg dir $C)) $D $E $F $G $H $I) (verb-arg np $C $E $F $G $H $I)) (= (verb-args have active (:: (arg dir $B)) $C $D $E $F $G $H) (verb-arg np $B $D $E $F $G $H)) (= (verb-args $B $C Nil $D $D $E $E $F $F) (no-args $B)) (= (object $B $C $D $E $F $G $H $I) ( (adv $J) (minus $J $D $K) (advs $C $L $K $F $M $H $N) (obj $B $L $D $E $M $G $N $I))) (= (obj ind (:: (arg dir $B)) $C $D $E $F $G $H) (verb-arg np $B $D $E $F $G $H)) (= (obj dir () $B $B $C $C $D $D) True) (= (pred-conj $B $C $D $E $F $G $H) ( (predicate $I $J $K $E $L $G $M) (pred-rest $B $J $C $K $D $L $F $M $H))) (= (pred-rest $B $C $D $E $F $G $H $I $J) ( (conj $B $K $C $L $D $G $M $I $N) (pred-conj $K $L $F $M $H $N $J))) (= (pred_rest $B $C $C $D $D $E $E $F $F) True) (= (verb-arg np $B $C $D $E $F $G) ( (s-all $H) (verb-case $I) (np $B $J $I $K compl $H $C $D $E $F $G))) (= (advs (Cons $B $C) $D $E $F $G $H $I) ( (is-adv $E) (adverb $B $F $J $H $K) (advs $C $D $E $J $G $K $I))) (= (advs $B $B $C $D $D $E $E) True) (= (adj-phrase $B $C $D $E $F $G) ( (adj $H $B $D $E $F $G) (empty $C))) (= (adj-phrase $B $C $D $E $F $G) (comp-phrase $B $C $D $E $F $G)) (= (no_args trans) True) (= (no_args ditrans) True) (= (no_args intrans) True) (= (conj (conj $B $C) (conj $B $D) $E $F (conj $B $E $F) $G $H $I $J) (conj $B $C $D $G $H $I $J)) (= (noun $B $C $D $E $F $G) ( (terminal $H $D $E $F $G) (noun-form $H $B $C))) (= (adj $B (adj $C) $D $E $F $G) ( (terminal $C $D $E $F $G) (adj $C $B))) (= (prep (prep $B) $C $D $E $F) ( (terminal $B $C $D $E $F) (prep $B))) (= (rel-adj (adj $B) $C $D $E $F) ( (terminal $G $C $D $E $F) (rel-adj $G $B))) (= (sup-adj (adj $B) $C $D $E $F) ( (terminal $G $C $D $E $F) (sup-adj $G $B))) (= (comp-adv less $B $C $D $E) (~ less $B $C $D $E)) (= (comp-adv more $B $C $D $E) (~ more $B $C $D $E)) (= (sup-adv least $B $C $D $E) (~ least $B $C $D $E)) (= (sup-adv most $B $C $D $E) (~ most $B $C $D $E)) (= (rel-pron $B $C $D $E $F) ( (terminal $G $C $D $E $F) (rel-pron $G $B))) (= (name $B $C $D $E $F) ( (opt-the $C $G $E $H) (terminal $B $G $D $H $F) (name $B))) (= (int-art $B plu (quant same (wh $B)) $C $D $E $F) ( (~ how $C $G $E $H) (~ many $G $D $H $F))) (= (int-art $B $C $D $E $F $G $H) ( (terminal $I $E $F $G $H) (int-art $I $B $C $D))) (= (int-pron $B $C $D $E $F) ( (terminal $G $C $D $E $F) (int-pron $G $B))) (= (adverb (adv $B) $C $D $E $F) ( (terminal $B $C $D $E $F) (adverb $B))) (= (poss-pron (pronoun $B) (+ $C $D) $E $F $G $H) ( (terminal $I $E $F $G $H) (poss-pron $I $B $C $D))) (= (pers-pron (pronoun $B) (+ $C $D) $E $F $G $H $I) ( (terminal $J $F $G $H $I) (pers-pron $J $B $C $D $E))) (= (quantifier-pron $B $C $D $E $F $G) ( (terminal $H $D $E $F $G) (quantifier-pron $H $B $C))) (= (context-pron (prep in) place $B $C $D $E) (~ where $B $C $D $E)) (= (context-pron (prep at) time $B $C $D $E) (~ when $B $C $D $E)) (= (number (nb $B) $C $D $E $F $G) ( (terminal $H $D $E $F $G) (number $H $B $C))) (= (terminator $B $C $D $E $F) ( (terminal $G $C $D $E $F) (terminator $G $B))) (= (opt_the $B $B $C $C) True) (= (opt-the $B $C $D $E) (~ the $B $C $D $E)) (= (conj $B list list $C $D $E $F) (terminal , $C $D $E $F)) (= (conj $B list end $C $D $E $F) ( (terminal $B $C $D $E $F) (conj $B))) (= (loc-pred $B $C $D $E $F) ( (terminal $G $C $D $E $F) (loc-pred $G $B))) (= (~ $B $C $D $E $F) ( (terminal $B $C $D $E $F) (~ $B))) ; ; ---------------------------------------------------------------------------- ; ; ; ; newdic ; ; ; ; ---------------------------------------------------------------------------- (= (word $Word) (~ $Word)) (= (word $Word) (conj $Word)) (= (word $Word) (adverb $Word)) (= (word $Word) (sup-adj $Word $_)) (= (word $Word) (rel-adj $Word $_)) (= (word $Word) (adj $Word $_)) (= (word $Word) (name $Word)) (= (word $Word) (terminator $Word $_)) (= (word $Word) (pers-pron $Word $_ $_ $_ $_)) (= (word $Word) (poss-pron $Word $_ $_ $_)) (= (word $Word) (rel-pron $Word $_)) (= (word $Word) (verb-form $Word $_ $_ $_)) (= (word $Word) (noun-form $Word $_ $_)) (= (word $Word) (prep $Word)) (= (word $Word) (quantifier-pron $Word $_ $_)) (= (word $Word) (number $Word $_ $_)) (= (word $Word) (det $Word $_ $_ $_)) (= (word $Word) (int-art $Word $_ $_ $_)) (= (word $Word) (int-pron $Word $_)) (= (word $Word) (loc-pred $Word $_)) (= (~ how) True) (= (~ whose) True) (= (~ there) True) (= (~ of) True) (= (~ ~) True) ; ; use ~ instead of ' to help assembler (= (~ ,) True) (= (~ s) True) (= (~ than) True) (= (~ at) True) (= (~ the) True) (= (~ not) True) (= (~ as) True) (= (~ that) True) (= (~ less) True) (= (~ more) True) (= (~ least) True) (= (~ most) True) (= (~ many) True) (= (~ where) True) (= (~ when) True) (= (conj and) True) (= (conj or) True) (= (int_pron what undef) True) (= (int_pron which undef) True) (= (int_pron who subj) True) (= (int_pron whom compl) True) (= (int_art what $X $_ (int_det $X)) True) (= (int_art which $X $_ (int_det $X)) True) (= (det the $No (the $No) def) True) (= (det a sin a indef) True) (= (det an sin a indef) True) (= (det every sin every indef) True) (= (det some $_ some indef) True) (= (det any $_ any indef) True) (= (det all plu all indef) True) (= (det each sin each indef) True) (= (det no $_ no indef) True) (= (number $W $I $Nb) ( (tr-number $W $I) (ag-number $I $Nb))) (= (tr_number (nb $I) $I) True) (= (tr_number one 1) True) (= (tr_number two 2) True) (= (tr_number three 3) True) (= (tr_number four 4) True) (= (tr_number five 5) True) (= (tr_number six 6) True) (= (tr_number seven 7) True) (= (tr_number eight 8) True) (= (tr_number nine 9) True) (= (tr_number ten 10) True) (= (ag_number 1 sin) True) (= (ag-number $N plu) (> $N 1)) (= (quantifier_pron everybody every person) True) (= (quantifier_pron everyone every person) True) (= (quantifier_pron everything every thing) True) (= (quantifier_pron somebody some person) True) (= (quantifier_pron someone some person) True) (= (quantifier_pron something some thing) True) (= (quantifier_pron anybody any person) True) (= (quantifier_pron anyone any person) True) (= (quantifier_pron anything any thing) True) (= (quantifier_pron nobody no person) True) (= (quantifier_pron nothing no thing) True) (= (prep as) True) (= (prep at) True) (= (prep of) True) (= (prep to) True) (= (prep by) True) (= (prep with) True) (= (prep in) True) (= (prep on) True) (= (prep from) True) (= (prep into) True) (= (prep through) True) (= (noun-form $Plu $Sin plu) (noun-plu $Plu $Sin)) (= (noun-form $Sin $Sin sin) (noun-sin $Sin)) (= (noun_form proportion proportion $_) True) (= (noun_form percentage percentage $_) True) (= (root_form (+ 1 sin)) True) (= (root_form (+ 2 $_)) True) (= (root_form (+ 1 plu)) True) (= (root_form (+ 3 plu)) True) (= (verb_root be) True) (= (verb_root have) True) (= (verb_root do) True) (= (verb_root border) True) (= (verb_root contain) True) (= (verb_root drain) True) (= (verb_root exceed) True) (= (verb_root flow) True) (= (verb_root rise) True) (= (regular_pres have) True) (= (regular_pres do) True) (= (regular_pres rise) True) (= (regular_pres border) True) (= (regular_pres contain) True) (= (regular_pres drain) True) (= (regular_pres exceed) True) (= (regular_pres flow) True) (= (regular_past had have) True) (= (regular_past bordered border) True) (= (regular_past contained contain) True) (= (regular_past drained drain) True) (= (regular_past exceeded exceed) True) (= (regular_past flowed flow) True) (= (rel_pron who subj) True) (= (rel_pron whom compl) True) (= (rel_pron which undef) True) (= (poss_pron my $_ 1 sin) True) (= (poss_pron your $_ 2 $_) True) (= (poss_pron his masc 3 sin) True) (= (poss_pron her fem 3 sin) True) (= (poss_pron its neut 3 sin) True) (= (poss_pron our $_ 1 plu) True) (= (poss_pron their $_ 3 plu) True) (= (pers_pron i $_ 1 sin subj) True) (= (pers_pron you $_ 2 $_ $_) True) (= (pers_pron he masc 3 sin subj) True) (= (pers_pron she fem 3 sin subj) True) (= (pers_pron it neut 3 sin $_) True) (= (pers_pron we $_ 1 plu subj) True) (= (pers_pron them $_ 3 plu subj) True) (= (pers_pron me $_ 1 sin (compl $_)) True) (= (pers_pron him masc 3 sin (compl $_)) True) (= (pers_pron her fem 3 sin (compl $_)) True) (= (pers_pron us $_ 1 plu (compl $_)) True) (= (pers_pron them $_ 3 plu (compl $_)) True) (= (terminator . $_) True) (= (terminator ? ?) True) (= (terminator ! !) True) (= (name $_) True) ; ; =========================================================================== ; ; specialised dictionary (= (loc_pred east (prep eastof)) True) (= (loc_pred west (prep westof)) True) (= (loc_pred north (prep northof)) True) (= (loc_pred south (prep southof)) True) (= (adj minimum restr) True) (= (adj maximum restr) True) (= (adj average restr) True) (= (adj total restr) True) (= (adj african restr) True) (= (adj american restr) True) (= (adj asian restr) True) (= (adj european restr) True) (= (adj great quant) True) (= (adj big quant) True) (= (adj small quant) True) (= (adj large quant) True) (= (adj old quant) True) (= (adj new quant) True) (= (adj populous quant) True) (= (rel_adj greater great) True) (= (rel_adj less small) True) (= (rel_adj bigger big) True) (= (rel_adj smaller small) True) (= (rel_adj larger large) True) (= (rel_adj older old) True) (= (rel_adj newer new) True) (= (sup_adj biggest big) True) (= (sup_adj smallest small) True) (= (sup_adj largest large) True) (= (sup_adj oldest old) True) (= (sup_adj newest new) True) (= (noun_sin average) True) (= (noun_sin total) True) (= (noun_sin sum) True) (= (noun_sin degree) True) (= (noun_sin sqmile) True) (= (noun_sin ksqmile) True) (= (noun_sin thousand) True) (= (noun_sin million) True) (= (noun_sin time) True) (= (noun_sin place) True) (= (noun_sin area) True) (= (noun_sin capital) True) (= (noun_sin city) True) (= (noun_sin continent) True) (= (noun_sin country) True) (= (noun_sin latitude) True) (= (noun_sin longitude) True) (= (noun_sin ocean) True) (= (noun_sin person) True) (= (noun_sin population) True) (= (noun_sin region) True) (= (noun_sin river) True) (= (noun_sin sea) True) (= (noun_sin seamass) True) (= (noun_sin number) True) (= (noun_plu averages average) True) (= (noun_plu totals total) True) (= (noun_plu sums sum) True) (= (noun_plu degrees degree) True) (= (noun_plu sqmiles sqmile) True) (= (noun_plu ksqmiles ksqmile) True) (= (noun_plu million million) True) (= (noun_plu thousand thousand) True) (= (noun_plu times time) True) (= (noun_plu places place) True) (= (noun_plu areas area) True) (= (noun_plu capitals capital) True) (= (noun_plu cities city) True) (= (noun_plu continents continent) True) (= (noun_plu countries country) True) (= (noun_plu latitudes latitude) True) (= (noun_plu longitudes longitude) True) (= (noun_plu oceans ocean) True) (= (noun_plu persons person) True) (= (noun_plu people person) True) (= (noun_plu populations population) True) (= (noun_plu regions region) True) (= (noun_plu rivers river) True) (= (noun_plu seas sea) True) (= (noun_plu seamasses seamass) True) (= (noun_plu numbers number) True) (= (verb-form $V $V inf $_) (verb-root $V)) (= (verb-form $V $V (+ pres fin) $Agmt) ( (regular-pres $V) (root-form $Agmt) (verb-root $V))) (= (verb-form $Past $Root (+ past $_) $_) (regular-past $Past $Root)) (= (verb_form am be (+ pres fin) (+ 1 sin)) True) (= (verb_form are be (+ pres fin) (+ 2 sin)) True) (= (verb_form is be (+ pres fin) (+ 3 sin)) True) (= (verb_form are be (+ pres fin) (+ $_ plu)) True) (= (verb_form was be (+ past fin) (+ 1 sin)) True) (= (verb_form were be (+ past fin) (+ 2 sin)) True) (= (verb_form was be (+ past fin) (+ 3 sin)) True) (= (verb_form were be (+ past fin) (+ $_ plu)) True) (= (verb_form been be (+ past part) $_) True) (= (verb_form being be (+ pres part) $_) True) (= (verb_form has have (+ pres fin) (+ 3 sin)) True) (= (verb_form having have (+ pres part) $_) True) (= (verb_form does do (+ pres fin) (+ 3 sin)) True) (= (verb_form did do (+ past fin) $_) True) (= (verb_form doing do (+ pres part) $_) True) (= (verb_form done do (+ past part) $_) True) (= (verb_form flows flow (+ pres fin) (+ 3 sin)) True) (= (verb_form flowing flow (+ pres part) $_) True) (= (verb_form rises rise (+ pres fin) (+ 3 sin)) True) (= (verb_form rose rise (+ past fin) $_) True) (= (verb_form risen rise (+ past part) $_) True) (= (verb_form borders border (+ pres fin) (+ 3 sin)) True) (= (verb_form bordering border (+ pres part) $_) True) (= (verb_form contains contain (+ pres fin) (+ 3 sin)) True) (= (verb_form containing contain (+ pres part) $_) True) (= (verb_form drains drain (+ pres fin) (+ 3 sin)) True) (= (verb_form draining drain (+ pres part) $_) True) (= (verb_form exceeds exceed (+ pres fin) (+ 3 sin)) True) (= (verb_form exceeding exceed (+ pres part) $_) True) (= (verb_type have (+ aux have)) True) (= (verb_type be (+ aux be)) True) (= (verb_type do (+ aux ditrans)) True) (= (verb_type rise (+ main intrans)) True) (= (verb_type border (+ main trans)) True) (= (verb_type contain (+ main trans)) True) (= (verb_type drain (+ main intrans)) True) (= (verb_type exceed (+ main trans)) True) (= (verb_type flow (+ main intrans)) True) (= (adverb yesterday) True) (= (adverb tomorrow) True)