# -*- coding: utf-8 -*- # pyswip -- Python SWI-Prolog bridge # Copyright (c) 2007-2018 YĆ¼ce Tekol # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import print_function import atexit import glob import os import sys from contextlib import contextmanager from ctypes import * from ctypes.util import find_library from subprocess import Popen, PIPE # To initialize the SWI-Prolog environment, two things need to be done: the # first is to find where the SO/DLL is located and the second is to find the # SWI-Prolog home, to get the saved state. # # The goal of the (entangled) process below is to make the library installation # independent. def _findSwiplPathFromFindLib(): """ This function resorts to ctype's find_library to find the path to the DLL. The biggest problem is that find_library does not give the path to the resource file. :returns: A path to the swipl SO/DLL or None if it is not found. :returns type: {str, None} """ path = (find_library('swipl') or find_library('pl') or find_library('libswipl')) # This last one is for Windows return path def _findSwiplFromExec(): """ This function tries to use an executable on the path to find SWI-Prolog SO/DLL and the resource file. :returns: A tuple of (path to the swipl DLL, path to the resource file) :returns type: ({str, None}, {str, None}) """ platform = sys.platform[:3] fullName = None swiHome = None try: # try to get library path from swipl executable. # We may have pl or swipl as the executable try: cmd = Popen(['swipl', '--dump-runtime-variables'], stdout=PIPE) except OSError: cmd = Popen(['pl', '--dump-runtime-variables'], stdout=PIPE) ret = cmd.communicate() # Parse the output into a dictionary ret = ret[0].decode().replace(';', '').splitlines() ret = [line.split('=', 1) for line in ret] rtvars = dict((name, value[1:-1]) for name, value in ret) # [1:-1] gets # rid of the # quotes if rtvars['PLSHARED'] == 'no': raise ImportError('SWI-Prolog is not installed as a shared ' 'library.') else: # PLSHARED == 'yes' swiHome = rtvars['PLBASE'] # The environment is in PLBASE if not os.path.exists(swiHome): swiHome = None # determine platform specific path. First try runtime # variable `PLLIBSWIPL` introduced in 9.1.1/9.0.1 if 'PLLIBSWIPL' in rtvars: fullName = rtvars['PLLIBSWIPL'] # determine platform specific path elif platform == "win": dllName = rtvars['PLLIB'][:-4] + '.' + rtvars['PLSOEXT'] path = os.path.join(rtvars['PLBASE'], 'bin') fullName = os.path.join(path, dllName) if not os.path.exists(fullName): fullName = None elif platform == "cyg": # e.g. /usr/lib/pl-5.6.36/bin/i686-cygwin/cygpl.dll dllName = 'cygpl.dll' path = os.path.join(rtvars['PLBASE'], 'bin', rtvars['PLARCH']) fullName = os.path.join(path, dllName) if not os.path.exists(fullName): fullName = None elif platform == "dar": dllName = 'lib' + rtvars['PLLIB'][2:] + '.' + "dylib" path = os.path.join(rtvars['PLBASE'], 'lib', rtvars['PLARCH']) baseName = os.path.join(path, dllName) if os.path.exists(baseName): fullName = baseName else: # We will search for versions fullName = None else: # assume UNIX-like # The SO name in some linuxes is of the form libswipl.so.5.10.2, # so we have to use glob to find the correct one dllName = 'lib' + rtvars['PLLIB'][2:] + '.' + rtvars['PLSOEXT'] path = os.path.join(rtvars['PLBASE'], 'lib', rtvars['PLARCH']) baseName = os.path.join(path, dllName) if os.path.exists(baseName): fullName = baseName else: # We will search for versions pattern = baseName + '.*' files = glob.glob(pattern) if len(files) == 0: fullName = None elif len(files) == 1: fullName = files[0] else: # Will this ever happen? fullName = None except (OSError, KeyError): # KeyError from accessing rtvars pass return (fullName, swiHome) def _findSwiplWin(): import re """ This function uses several heuristics to gues where SWI-Prolog is installed in Windows. It always returns None as the path of the resource file because, in Windows, the way to find it is more robust so the SWI-Prolog DLL is always able to find it. :returns: A tuple of (path to the swipl DLL, path to the resource file) :returns type: ({str, None}, {str, None}) """ dllNames = ('swipl.dll', 'libswipl.dll') # First try: check the usual installation path (this is faster but # hardcoded) programFiles = os.getenv('ProgramFiles') paths = [os.path.join(programFiles, r'pl\bin', dllName) for dllName in dllNames] for path in paths: if os.path.exists(path): return (path, None) # Second try: use the find_library path = _findSwiplPathFromFindLib() if path is not None and os.path.exists(path): return (path, None) # Third try: use reg.exe to find the installation path in the registry # (reg should be installed in all Windows XPs) try: cmd = Popen(['reg', 'query', r'HKEY_LOCAL_MACHINE\Software\SWI\Prolog', '/v', 'home'], stdout=PIPE) ret = cmd.communicate() # Result is like: # ! REG.EXE VERSION 3.0 # # HKEY_LOCAL_MACHINE\Software\SWI\Prolog # home REG_SZ C:\Program Files\pl # (Note: spaces may be \t or spaces in the output) ret = ret[0].splitlines() ret = [line.decode("utf-8") for line in ret if len(line) > 0] pattern = re.compile('[^h]*home[^R]*REG_SZ( |\t)*(.*)$') match = pattern.match(ret[-1]) if match is not None: path = match.group(2) paths = [os.path.join(path, 'bin', dllName) for dllName in dllNames] for path in paths: if os.path.exists(path): return (path, None) except OSError: # reg.exe not found? Weird... pass # May the exec is on path? (path, swiHome) = _findSwiplFromExec() if path is not None: return (path, swiHome) # Last try: maybe it is in the current dir for dllName in dllNames: if os.path.exists(dllName): return (dllName, None) return (None, None) def _findSwiplLin(): """ This function uses several heuristics to guess where SWI-Prolog is installed in Linuxes. :returns: A tuple of (path to the swipl so, path to the resource file) :returns type: ({str, None}, {str, None}) """ # Maybe the exec is on path? (path, swiHome) = _findSwiplFromExec() if path is not None: return (path, swiHome) # If it is not, use find_library path = _findSwiplPathFromFindLib() if path is not None: return (path, swiHome) # Our last try: some hardcoded paths. paths = ['/lib', '/usr/lib', '/usr/local/lib', '.', './lib'] names = ['libswipl.so', 'libpl.so'] path = None for name in names: for try_ in paths: try_ = os.path.join(try_, name) if os.path.exists(try_): path = try_ break if path is not None: return (path, swiHome) return (None, None) def walk(path, name): """ This function is a 2-time recursive func, that findin file in dirs :parameters: - `path` (str) - Directory path - `name` (str) - Name of file, that we lookin for :returns: Path to the swipl so, path to the resource file :returns type: (str) """ back_path = path[:] path = os.path.join(path, name) if os.path.exists(path): return path else: for dir_ in os.listdir(back_path): path = os.path.join(back_path, dir_) if os.path.isdir(path): res_path = walk(path, name) if res_path is not None: return (res_path, back_path) return None def get_swi_ver(): import re swi_ver = input( 'Please enter you SWI-Prolog version in format "X.Y.Z": ') match = re.search(r'[0-9]+\.[0-9]+\.[0-9]+', swi_ver) if match is None: raise InputError('Error, type normal version') return swi_ver def _findSwiplMacOSHome(): """ This function is guesing where SWI-Prolog is installed in MacOS via .app. :parameters: - `swi_ver` (str) - Version of SWI-Prolog in '[0-9].[0-9].[0-9]' format :returns: A tuple of (path to the swipl so, path to the resource file) :returns type: ({str, None}, {str, None}) """ # Need more help with MacOS # That way works, but need more work names = ['libswipl.dylib', 'libpl.dylib'] path = os.environ.get('SWI_HOME_DIR') if path is None: path = os.environ.get('SWI_LIB_DIR') if path is None: path = os.environ.get('PLBASE') if path is None: path = '/Applications/SWI-Prolog.app/Contents/' paths = [path] for name in names: for path in paths: (path_res, back_path) = walk(path, name) if path_res is not None: os.environ['SWI_LIB_DIR'] = back_path return (path_res, None) return (None, None) def _findSwiplDar(): """ This function uses several heuristics to guess where SWI-Prolog is installed in MacOS. :returns: A tuple of (path to the swipl so, path to the resource file) :returns type: ({str, None}, {str, None}) """ # If the exec is in path (path, swiHome) = _findSwiplFromExec() if path is not None: return (path, swiHome) # If it is not, use find_library path = _findSwiplPathFromFindLib() if path is not None: return (path, swiHome) # Last guess, searching for the file paths = ['.', './lib', '/usr/lib/', '/usr/local/lib', '/opt/local/lib'] names = ['libswipl.dylib', 'libpl.dylib'] for name in names: for path in paths: path = os.path.join(path, name) if os.path.exists(path): return (path, None) return (None, None) def _findSwipl(): """ This function makes a big effort to find the path to the SWI-Prolog shared library. Since this is both OS dependent and installation dependent, we may not aways succeed. If we do, we return a name/path that can be used by CDLL(). Otherwise we raise an exception. :return: Tuple. Fist element is the name or path to the library that can be used by CDLL. Second element is the path were SWI-Prolog resource file may be found (this is needed in some Linuxes) :rtype: Tuple of strings :raises ImportError: If we cannot guess the name of the library """ # Now begins the guesswork platform = sys.platform[:3] if platform == "win": # In Windows, we have the default installer # path and the registry to look (path, swiHome) = _findSwiplWin() elif platform in ("lin", "cyg"): (path, swiHome) = _findSwiplLin() elif platform == "dar": # Help with MacOS is welcome!! (path, swiHome) = _findSwiplDar() if path is None: (path, swiHome) = _findSwiplMacOSHome() else: # This should work for other UNIX (path, swiHome) = _findSwiplLin() # This is a catch all raise if path is None: raise ImportError('Could not find the SWI-Prolog library in this ' 'platform. If you are sure it is installed, please ' 'open an issue.') else: return (path, swiHome) def _fixWindowsPath(dll): """ When the path to the DLL is not in Windows search path, Windows will not be able to find other DLLs on the same directory, so we have to add it to the path. This function takes care of it. :parameters: - `dll` (str) - File name of the DLL """ if sys.platform[:3] != 'win': return # Nothing to do here pathToDll = os.path.dirname(dll) currentWindowsPath = os.getenv('PATH') if pathToDll not in currentWindowsPath: # We will prepend the path, to avoid conflicts between DLLs newPath = pathToDll + ';' + currentWindowsPath os.putenv('PATH', newPath) _stringMap = {} def str_to_bytes(string): """ Turns a string into a bytes if necessary (i.e. if it is not already a bytes object or None). If string is None, int or c_char_p it will be returned directly. :param string: The string that shall be transformed :type string: str, bytes or type(None) :return: Transformed string :rtype: c_char_p compatible object (bytes, c_char_p, int or None) """ if string is None or isinstance(string, (int, c_char_p)): return string if not isinstance(string, bytes): if string not in _stringMap: _stringMap[string] = string.encode() string = _stringMap[string] return string def list_to_bytes_list(strList): """ This function turns an array of strings into a pointer array with pointers pointing to the encodings of those strings Possibly contained bytes are kept as they are. :param strList: List of strings that shall be converted :type strList: List of strings :returns: Pointer array with pointers pointing to bytes :raises: TypeError if strList is not list, set or tuple """ pList = c_char_p * len(strList) # if strList is already a pointerarray or None, there is nothing to do if isinstance(strList, (pList, type(None))): return strList if not isinstance(strList, (list, set, tuple)): raise TypeError("strList must be list, set or tuple, not " + str(type(strList))) pList = pList() for i, elem in enumerate(strList): pList[i] = str_to_bytes(elem) return pList # create a decorator that turns the incoming strings into c_char_p compatible # butes or pointer arrays def check_strings(strings, arrays): """ Decorator function which can be used to automatically turn an incoming string into a bytes object and an incoming list to a pointer array if necessary. :param strings: Indices of the arguments must be pointers to bytes :type strings: List of integers :param arrays: Indices of the arguments must be arrays of pointers to bytes :type arrays: List of integers """ # if given a single element, turn it into a list if isinstance(strings, int): strings = [strings] elif strings is None: strings = [] # check if all entries are integers for i,k in enumerate(strings): if not isinstance(k, int): raise TypeError(('Wrong type for index at {0} '+ 'in strings. Must be int, not {1}!').format(i,k)) # if given a single element, turn it into a list if isinstance(arrays, int): arrays = [arrays] elif arrays is None: arrays = [] # check if all entries are integers for i,k in enumerate(arrays): if not isinstance(k, int): raise TypeError(('Wrong type for index at {0} '+ 'in arrays. Must be int, not {1}!').format(i,k)) # check if some index occurs in both if set(strings).intersection(arrays): raise ValueError('One or more elements occur in both arrays and ' + ' strings. One parameter cannot be both list and string!') # create the checker that will check all arguments given by argsToCheck # and turn them into the right datatype. def checker(func): def check_and_call(*args): args = list(args) for i in strings: arg = args[i] args[i] = str_to_bytes(arg) for i in arrays: arg = args[i] args[i] = list_to_bytes_list(arg) return func(*args) return check_and_call return checker # Find the path and resource file. SWI_HOME_DIR shall be treated as a constant # by users of this module (_path, SWI_HOME_DIR) = _findSwipl() _fixWindowsPath(_path) # Load the library _lib = CDLL(_path, mode=RTLD_GLOBAL) # /******************************* # * VERSIONS * # *******************************/ PL_VERSION_SYSTEM =1 # Prolog version PL_VERSION_FLI =2 # PL_* compatibility PL_VERSION_REC =3 # PL_record_external() compatibility PL_VERSION_QLF =4 # Saved QLF format version PL_VERSION_QLF_LOAD =5 # Min loadable QLF format version PL_VERSION_VM =6 # VM signature PL_VERSION_BUILT_IN =7 # Built-in predicate signature # After SWI-Prolog 8.5.2, PL_version was renamed to PL_version_info # to avoid a conflict with Perl. For more details, see the following: # https://github.com/SWI-Prolog/swipl-devel/issues/900 # https://github.com/SWI-Prolog/swipl-devel/issues/910 try: if _lib.PL_version_info != None: PL_version = _lib.PL_version_info # swi-prolog > 8.5.2 else: PL_version = _lib.PL_version # swi-prolog <= 8.5.2 PL_version.argtypes = [c_int] PL_version.restype = c_uint PL_VERSION = PL_version(PL_VERSION_SYSTEM) if PL_VERSION<80200: raise Exception("swi-prolog >= 8.2.0 is required") except AttributeError: raise Exception("swi-prolog version number could not be determined") # PySwip constants PYSWIP_MAXSTR = 1024 c_int_p = c_void_p c_long_p = c_void_p c_double_p = c_void_p c_uint_p = c_void_p # # constants (from SWI-Prolog.h) # /* PL_unify_term( arguments */ if PL_VERSION<80200: # constants (from SWI-Prolog.h) # PL_unify_term() arguments PL_VARIABLE = 1 # nothing PL_ATOM = 2 # const char PL_INTEGER = 3 # int PL_FLOAT = 4 # double PL_STRING = 5 # const char * PL_TERM = 6 # # PL_unify_term() PL_FUNCTOR = 10 # functor_t, arg ... PL_LIST = 11 # length, arg ... PL_CHARS = 12 # const char * PL_POINTER = 13 # void * # /* PlArg::PlArg(text, type) */ #define PL_CODE_LIST (14) /* [ascii...] */ #define PL_CHAR_LIST (15) /* [h,e,l,l,o] */ #define PL_BOOL (16) /* PL_set_feature() */ #define PL_FUNCTOR_CHARS (17) /* PL_unify_term() */ #define _PL_PREDICATE_INDICATOR (18) /* predicate_t (Procedure) */ #define PL_SHORT (19) /* short */ #define PL_INT (20) /* int */ #define PL_LONG (21) /* long */ #define PL_DOUBLE (22) /* double */ #define PL_NCHARS (23) /* unsigned, const char * */ #define PL_UTF8_CHARS (24) /* const char * */ #define PL_UTF8_STRING (25) /* const char * */ #define PL_INT64 (26) /* int64_t */ #define PL_NUTF8_CHARS (27) /* unsigned, const char * */ #define PL_NUTF8_CODES (29) /* unsigned, const char * */ #define PL_NUTF8_STRING (30) /* unsigned, const char * */ #define PL_NWCHARS (31) /* unsigned, const wchar_t * */ #define PL_NWCODES (32) /* unsigned, const wchar_t * */ #define PL_NWSTRING (33) /* unsigned, const wchar_t * */ #define PL_MBCHARS (34) /* const char * */ #define PL_MBCODES (35) /* const char * */ #define PL_MBSTRING (36) /* const char * */ REP_ISO_LATIN_1 = 0x0000 # output representation REP_UTF8 = 0x1000 REP_MB = 0x2000 else: PL_VARIABLE = 1 # nothing PL_ATOM = 2 # const char * PL_INTEGER = 3 # int PL_RATIONAL = 4 # rational number PL_FLOAT = 5 # double PL_STRING = 6 # const char * PL_TERM = 7 PL_NIL = 8 # The constant [] PL_BLOB = 9 # non-atom blob PL_LIST_PAIR = 10 # [_|_] term # # PL_unify_term( PL_FUNCTOR = 11 # functor_t, arg ... PL_LIST = 12 # length, arg ... PL_CHARS = 13 # const char * PL_POINTER = 14 # void * # PlArg::PlArg(text, type PL_CODE_LIST = 15 # [ascii...] PL_CHAR_LIST = 16 # [h,e,l,l,o] PL_BOOL = 17 # PL_set_prolog_flag( PL_FUNCTOR_CHARS= 18 # PL_unify_term( _PL_PREDICATE_INDICATOR= 19 # predicate_t= Procedure PL_SHORT = 20 # short PL_INT = 21 # int PL_LONG = 22 # long PL_DOUBLE = 23 # double PL_NCHARS = 24 # size_t, const char * PL_UTF8_CHARS = 25 # const char * PL_UTF8_STRING = 26 # const char * PL_INT64 = 27 # int64_t PL_NUTF8_CHARS = 28 # size_t, const char * PL_NUTF8_CODES = 29 # size_t, const char * PL_NUTF8_STRING = 30 # size_t, const char * PL_NWCHARS = 31 # size_t, const wchar_t * PL_NWCODES = 32 # size_t, const wchar_t * PL_NWSTRING = 33 # size_t, const wchar_t * PL_MBCHARS = 34 # const char * PL_MBCODES = 35 # const char * PL_MBSTRING = 36 # const char * PL_INTPTR = 37 # intptr_t PL_CHAR = 38 # int PL_CODE = 39 # int PL_BYTE = 40 # int # PL_skip_list( PL_PARTIAL_LIST = 41 # a partial list PL_CYCLIC_TERM = 42 # a cyclic list/term PL_NOT_A_LIST = 43 # Object is not a list # dicts PL_DICT = 44 REP_ISO_LATIN_1 = 0x0000 # output representation REP_UTF8 = 0x00100000 REP_MB = 0x00200000 # /******************************** # * NON-DETERMINISTIC CALL/RETURN * # *********************************/ # # Note 1: Non-deterministic foreign functions may also use the deterministic # return methods PL_succeed and PL_fail. # # Note 2: The argument to PL_retry is a 30 bits signed integer (long). PL_FIRST_CALL = 0 PL_CUTTED = 1 PL_PRUNED = PL_CUTTED PL_REDO = 2 PL_FA_NOTRACE = 0x01 # foreign cannot be traced PL_FA_TRANSPARENT = 0x02 # foreign is module transparent PL_FA_NONDETERMINISTIC = 0x04 # foreign is non-deterministic PL_FA_VARARGS = 0x08 # call using t0, ac, ctx PL_FA_CREF = 0x10 # Internal: has clause-reference */ # /******************************* # * CALL-BACK * # *******************************/ PL_Q_DEBUG = 0x01 # = TRUE for backward compatibility PL_Q_NORMAL = 0x02 # normal usage PL_Q_NODEBUG = 0x04 # use this one PL_Q_CATCH_EXCEPTION = 0x08 # handle exceptions in C PL_Q_PASS_EXCEPTION = 0x10 # pass to parent environment PL_Q_DETERMINISTIC = 0x20 # call was deterministic # /******************************* # * BLOBS * # *******************************/ #define PL_BLOB_MAGIC_B 0x75293a00 /* Magic to validate a blob-type */ #define PL_BLOB_VERSION 1 /* Current version */ #define PL_BLOB_MAGIC (PL_BLOB_MAGIC_B|PL_BLOB_VERSION) #define PL_BLOB_UNIQUE 0x01 /* Blob content is unique */ #define PL_BLOB_TEXT 0x02 /* blob contains text */ #define PL_BLOB_NOCOPY 0x04 /* do not copy the data */ #define PL_BLOB_WCHAR 0x08 /* wide character string */ # /******************************* # * CHAR BUFFERS * # *******************************/ # Changed in 8.1.22 if PL_VERSION < 80122: CVT_ATOM = 0x0001 CVT_STRING = 0x0002 CVT_LIST = 0x0004 CVT_INTEGER = 0x0008 CVT_FLOAT = 0x0010 CVT_VARIABLE = 0x0020 CVT_NUMBER = CVT_INTEGER | CVT_FLOAT CVT_ATOMIC = CVT_NUMBER | CVT_ATOM | CVT_STRING CVT_WRITE = 0x0040 # as of version 3.2.10 CVT_ALL = CVT_ATOMIC | CVT_LIST CVT_MASK = 0x00ff BUF_DISCARDABLE = 0x0000 BUF_RING = 0x0100 BUF_MALLOC = 0x0200 CVT_EXCEPTION = 0x10000 # throw exception on error else: CVT_ATOM = 0x00000001 CVT_STRING = 0x00000002 CVT_LIST = 0x00000004 CVT_INTEGER = 0x00000008 CVT_RATIONAL = 0x00000010 CVT_FLOAT = 0x00000020 CVT_VARIABLE = 0x00000040 CVT_NUMBER = CVT_RATIONAL | CVT_FLOAT CVT_ATOMIC = CVT_NUMBER | CVT_ATOM | CVT_STRING CVT_WRITE = 0x00000080 CVT_WRITE_CANONICAL = 0x00000080 CVT_WRITEQ = 0x000000C0 CVT_ALL = CVT_ATOMIC | CVT_LIST CVT_MASK = 0x00000fff BUF_DISCARDABLE = 0x00000000 BUF_STACK = 0x00010000 BUF_RING = BUF_STACK BUF_MALLOC = 0x00020000 BUF_ALLOW_STACK = 0x00040000 CVT_EXCEPTION = 0x00001000 # throw exception on error argv = list_to_bytes_list(sys.argv + [None]) argc = len(sys.argv) # /******************************* # * TYPES * # *******************************/ # # typedef uintptr_t atom_t; /* Prolog atom */ # typedef uintptr_t functor_t; /* Name/arity pair */ # typedef void * module_t; /* Prolog module */ # typedef void * predicate_t; /* Prolog procedure */ # typedef void * record_t; /* Prolog recorded term */ # typedef uintptr_t term_t; /* opaque term handle */ # typedef uintptr_t qid_t; /* opaque query handle */ # typedef uintptr_t PL_fid_t; /* opaque foreign context handle */ # typedef void * control_t; /* non-deterministic control arg */ # typedef void * PL_engine_t; /* opaque engine handle */ # typedef uintptr_t PL_atomic_t; /* same a word */ # typedef uintptr_t foreign_t; /* return type of foreign functions */ # typedef wchar_t pl_wchar_t; /* Prolog wide character */ # typedef foreign_t (*pl_function_t)(); /* foreign language functions */ # typedef uintptr_t buf_mark_t; /* buffer mark handle */ atom_t = c_uint_p functor_t = c_uint_p module_t = c_void_p predicate_t = c_void_p record_t = c_void_p term_t = c_uint_p qid_t = c_uint_p PL_fid_t = c_uint_p fid_t = c_uint_p control_t = c_void_p PL_engine_t = c_void_p PL_atomic_t = c_uint_p foreign_t = c_uint_p pl_wchar_t = c_wchar intptr_t = c_long ssize_t = intptr_t wint_t = c_uint buf_mark_t = c_uint_p PL_initialise = _lib.PL_initialise PL_initialise = check_strings(None, 1)(PL_initialise) PL_mark_string_buffers = _lib.PL_mark_string_buffers PL_mark_string_buffers.argtypes = [buf_mark_t] PL_release_string_buffers_from_mark = _lib.PL_release_string_buffers_from_mark PL_release_string_buffers_from_mark.argtypes = [buf_mark_t] @contextmanager def PL_STRINGS_MARK(): __PL_mark = buf_mark_t() PL_mark_string_buffers(byref(__PL_mark)) try: yield finally: PL_release_string_buffers_from_mark(__PL_mark) PL_open_foreign_frame = _lib.PL_open_foreign_frame PL_open_foreign_frame.restype = fid_t PL_foreign_control = _lib.PL_foreign_control PL_foreign_control.argtypes = [control_t] PL_foreign_control.restype = c_int PL_foreign_context = _lib.PL_foreign_context PL_foreign_context.argtypes = [control_t] PL_foreign_context.restype = intptr_t PL_retry = _lib._PL_retry PL_retry.argtypes = [intptr_t] PL_retry.restype = foreign_t PL_new_term_ref = _lib.PL_new_term_ref PL_new_term_ref.restype = term_t PL_new_term_refs = _lib.PL_new_term_refs PL_new_term_refs.argtypes = [c_int] PL_new_term_refs.restype = term_t PL_chars_to_term = _lib.PL_chars_to_term PL_chars_to_term.argtypes = [c_char_p, term_t] PL_chars_to_term.restype = c_int PL_chars_to_term = check_strings(0, None)(PL_chars_to_term) PL_call = _lib.PL_call PL_call.argtypes = [term_t, module_t] PL_call.restype = c_int PL_call_predicate = _lib.PL_call_predicate PL_call_predicate.argtypes = [module_t, c_int, predicate_t, term_t] PL_call_predicate.restype = c_int PL_discard_foreign_frame = _lib.PL_discard_foreign_frame PL_discard_foreign_frame.argtypes = [fid_t] PL_discard_foreign_frame.restype = None PL_put_chars = _lib.PL_put_chars PL_put_chars.argtypes = [term_t, c_int, c_size_t, c_char_p] PL_put_chars.restype = c_int PL_put_list_chars = _lib.PL_put_list_chars PL_put_list_chars.argtypes = [term_t, c_char_p] PL_put_list_chars.restype = c_int PL_put_list_chars = check_strings(1, None)(PL_put_list_chars) #PL_EXPORT(void) PL_register_atom(atom_t a); PL_register_atom = _lib.PL_register_atom PL_register_atom.argtypes = [atom_t] PL_register_atom.restype = None #PL_EXPORT(void) PL_unregister_atom(atom_t a); PL_unregister_atom = _lib.PL_unregister_atom PL_unregister_atom.argtypes = [atom_t] PL_unregister_atom.restype = None #PL_EXPORT(atom_t) PL_functor_name(functor_t f); PL_functor_name = _lib.PL_functor_name PL_functor_name.argtypes = [functor_t] PL_functor_name.restype = atom_t #PL_EXPORT(int) PL_functor_arity(functor_t f); PL_functor_arity = _lib.PL_functor_arity PL_functor_arity.argtypes = [functor_t] PL_functor_arity.restype = c_int # /* Get C-values from Prolog terms */ #PL_EXPORT(int) PL_get_atom(term_t t, atom_t *a); PL_get_atom = _lib.PL_get_atom PL_get_atom.argtypes = [term_t, POINTER(atom_t)] PL_get_atom.restype = c_int #PL_EXPORT(int) PL_get_bool(term_t t, int *value); PL_get_bool = _lib.PL_get_bool PL_get_bool.argtypes = [term_t, POINTER(c_int)] PL_get_bool.restype = c_int #PL_EXPORT(int) PL_get_atom_chars(term_t t, char **a); PL_get_atom_chars = _lib.PL_get_atom_chars # FIXME PL_get_atom_chars.argtypes = [term_t, POINTER(c_char_p)] PL_get_atom_chars.restype = c_int PL_get_atom_chars = check_strings(None, 1)(PL_get_atom_chars) PL_get_string_chars = _lib.PL_get_string PL_get_string_chars.argtypes = [term_t, POINTER(c_char_p), c_int_p] PL_get_chars = _lib.PL_get_chars # FIXME: PL_get_chars.argtypes = [term_t, POINTER(c_char_p), c_uint] PL_get_chars.restype = c_int PL_get_chars = check_strings(None, 1)(PL_get_chars) PL_get_integer = _lib.PL_get_integer PL_get_integer.argtypes = [term_t, POINTER(c_int)] PL_get_integer.restype = c_int PL_get_long = _lib.PL_get_long PL_get_long.argtypes = [term_t, POINTER(c_long)] PL_get_long.restype = c_int PL_get_float = _lib.PL_get_float PL_get_float.argtypes = [term_t, c_double_p] PL_get_float.restype = c_int PL_get_functor = _lib.PL_get_functor PL_get_functor.argtypes = [term_t, POINTER(functor_t)] PL_get_functor.restype = c_int PL_get_name_arity = _lib.PL_get_name_arity PL_get_name_arity.argtypes = [term_t, POINTER(atom_t), POINTER(c_int)] PL_get_name_arity.restype = c_int PL_get_arg = _lib.PL_get_arg PL_get_arg.argtypes = [c_int, term_t, term_t] PL_get_arg.restype = c_int PL_get_head = _lib.PL_get_head PL_get_head.argtypes = [term_t, term_t] PL_get_head.restype = c_int PL_get_tail = _lib.PL_get_tail PL_get_tail.argtypes = [term_t, term_t] PL_get_tail.restype = c_int PL_get_nil = _lib.PL_get_nil PL_get_nil.argtypes = [term_t] PL_get_nil.restype = c_int PL_put_atom_chars = _lib.PL_put_atom_chars PL_put_atom_chars.argtypes = [term_t, c_char_p] PL_put_atom_chars.restype = c_int PL_put_atom_chars = check_strings(1, None)(PL_put_atom_chars) PL_atom_chars = _lib.PL_atom_chars PL_atom_chars.argtypes = [atom_t] PL_atom_chars.restype = c_char_p PL_atom_wchars = _lib.PL_atom_wchars PL_atom_wchars.argtypes = [atom_t, POINTER(c_size_t)] PL_atom_wchars.restype = c_wchar_p PL_predicate = _lib.PL_predicate PL_predicate.argtypes = [c_char_p, c_int, c_char_p] PL_predicate.restype = predicate_t PL_predicate = check_strings([0,2], None)(PL_predicate) PL_pred = _lib.PL_pred PL_pred.argtypes = [functor_t, module_t] PL_pred.restype = predicate_t PL_open_query = _lib.PL_open_query PL_open_query.argtypes = [module_t, c_int, predicate_t, term_t] PL_open_query.restype = qid_t PL_next_solution = _lib.PL_next_solution PL_next_solution.argtypes = [qid_t] PL_next_solution.restype = c_int PL_copy_term_ref = _lib.PL_copy_term_ref PL_copy_term_ref.argtypes = [term_t] PL_copy_term_ref.restype = term_t PL_get_list = _lib.PL_get_list PL_get_list.argtypes = [term_t, term_t, term_t] PL_get_list.restype = c_int PL_get_chars = _lib.PL_get_chars # FIXME PL_close_query = _lib.PL_close_query PL_close_query.argtypes = [qid_t] PL_close_query.restype = None PL_cut_query = _lib.PL_cut_query PL_cut_query.argtypes = [qid_t] PL_cut_query.restype = None PL_halt = _lib.PL_halt PL_halt.argtypes = [c_int] PL_halt.restype = None PL_cleanup = _lib.PL_cleanup PL_cleanup.restype = c_int PL_unify_integer = _lib.PL_unify_integer PL_unify_atom_chars = _lib.PL_unify_atom_chars PL_unify_float = _lib.PL_unify_float PL_unify_float.argtypes = [term_t, c_double] PL_unify_float.restype = c_int PL_unify_bool = _lib.PL_unify_bool PL_unify_bool.argtypes = [term_t, c_int] PL_unify_bool.restype = c_int PL_unify_list = _lib.PL_unify_list PL_unify_list.argtypes = [term_t, term_t, term_t] PL_unify_list.restype = c_int PL_unify_nil = _lib.PL_unify_nil PL_unify_nil.argtypes = [term_t] PL_unify_nil.restype = c_int PL_unify_atom = _lib.PL_unify_atom PL_unify_atom.argtypes = [term_t, atom_t] PL_unify_atom.restype = c_int PL_unify_atom_chars = _lib.PL_unify_atom_chars PL_unify_atom_chars.argtypes = [term_t, c_char_p] PL_unify_atom_chars.restype = c_int PL_unify_string_chars = _lib.PL_unify_string_chars PL_unify_string_chars.argtypes = [term_t, c_char_p] PL_unify_string_chars.restype = c_void_p PL_foreign_control = _lib.PL_foreign_control PL_foreign_control.argtypes = [control_t] PL_foreign_control.restypes = c_int PL_foreign_context_address = _lib.PL_foreign_context_address PL_foreign_context_address.argtypes = [control_t] PL_foreign_context_address.restypes = c_void_p PL_retry_address = _lib._PL_retry_address PL_retry_address.argtypes = [c_void_p] PL_retry_address.restypes = foreign_t PL_unify = _lib.PL_unify PL_unify.restype = c_int PL_succeed = 1 PL_unify_arg = _lib.PL_unify_arg PL_unify_arg.argtypes = [c_int, term_t, term_t] PL_unify_arg.restype = c_int # Verify types PL_term_type = _lib.PL_term_type PL_term_type.argtypes = [term_t] PL_term_type.restype = c_int PL_is_variable = _lib.PL_is_variable PL_is_variable.argtypes = [term_t] PL_is_variable.restype = c_int PL_is_ground = _lib.PL_is_ground PL_is_ground.argtypes = [term_t] PL_is_ground.restype = c_int PL_is_atom = _lib.PL_is_atom PL_is_atom.argtypes = [term_t] PL_is_atom.restype = c_int PL_is_integer = _lib.PL_is_integer PL_is_integer.argtypes = [term_t] PL_is_integer.restype = c_int PL_is_string = _lib.PL_is_string PL_is_string.argtypes = [term_t] PL_is_string.restype = c_int PL_is_float = _lib.PL_is_float PL_is_float.argtypes = [term_t] PL_is_float.restype = c_int PL_is_compound = _lib.PL_is_compound PL_is_compound.argtypes = [term_t] PL_is_compound.restype = c_int PL_is_functor = _lib.PL_is_functor PL_is_functor.argtypes = [term_t, functor_t] PL_is_functor.restype = c_int PL_is_list = _lib.PL_is_list PL_is_list.argtypes = [term_t] PL_is_list.restype = c_int PL_is_atomic = _lib.PL_is_atomic PL_is_atomic.argtypes = [term_t] PL_is_atomic.restype = c_int PL_is_number = _lib.PL_is_number PL_is_number.argtypes = [term_t] PL_is_number.restype = c_int PL_put_variable = _lib.PL_put_variable PL_put_variable.argtypes = [term_t] PL_put_variable.restype = None PL_put_float = _lib.PL_put_float PL_put_float.argtypes = [term_t, c_double] PL_put_float.restype = None PL_put_functor = _lib.PL_put_functor PL_put_functor.argtypes = [term_t, functor_t] PL_put_functor.restype = None PL_put_list = _lib.PL_put_list PL_put_list.argtypes = [term_t] PL_put_list.restype = None PL_put_nil = _lib.PL_put_nil PL_put_nil.argtypes = [term_t] PL_put_nil.restype = None PL_put_term = _lib.PL_put_term PL_put_term.argtypes = [term_t, term_t] PL_put_term.restype = None PL_cons_functor = _lib.PL_cons_functor # FIXME: PL_cons_functor_v = _lib.PL_cons_functor_v PL_cons_functor_v.argtypes = [term_t, functor_t, term_t] PL_cons_functor_v.restype = None PL_cons_list = _lib.PL_cons_list PL_cons_list.argtypes = [term_t, term_t, term_t] PL_cons_list.restype = None PL_exception = _lib.PL_exception PL_exception.argtypes = [qid_t] PL_exception.restype = term_t PL_register_foreign = _lib.PL_register_foreign PL_register_foreign = check_strings(0, None)(PL_register_foreign) PL_new_atom = _lib.PL_new_atom PL_new_atom.argtypes = [c_char_p] PL_new_atom.restype = atom_t PL_new_atom = check_strings(0, None)(PL_new_atom) PL_new_functor = _lib.PL_new_functor PL_new_functor.argtypes = [atom_t, c_int] PL_new_functor.restype = functor_t PL_compare = _lib.PL_compare PL_compare.argtypes = [term_t, term_t] PL_compare.restype = c_int PL_same_compound = _lib.PL_same_compound PL_same_compound.argtypes = [term_t, term_t] PL_same_compound.restype = c_int PL_record = _lib.PL_record PL_record.argtypes = [term_t] PL_record.restype = record_t PL_recorded = _lib.PL_recorded PL_recorded.argtypes = [record_t, term_t] PL_recorded.restype = None PL_erase = _lib.PL_erase PL_erase.argtypes = [record_t] PL_erase.restype = None PL_new_module = _lib.PL_new_module PL_new_module.argtypes = [atom_t] PL_new_module.restype = module_t PL_is_initialised = _lib.PL_is_initialised intptr_t = c_long ssize_t = intptr_t wint_t = c_uint PL_thread_self = _lib.PL_thread_self PL_thread_self.restype = c_int PL_thread_attach_engine = _lib.PL_thread_attach_engine PL_thread_attach_engine.argtypes = [c_void_p] PL_thread_attach_engine.restype = c_int class _mbstate_t_value(Union): _fields_ = [("__wch", wint_t), ("__wchb", c_char * 4)] class mbstate_t(Structure): _fields_ = [("__count", c_int), ("__value", _mbstate_t_value)] # stream related funcs Sread_function = CFUNCTYPE(ssize_t, c_void_p, c_char_p, c_size_t) Swrite_function = CFUNCTYPE(ssize_t, c_void_p, c_char_p, c_size_t) Sseek_function = CFUNCTYPE(c_long, c_void_p, c_long, c_int) Sseek64_function = CFUNCTYPE(c_int64, c_void_p, c_int64, c_int) Sclose_function = CFUNCTYPE(c_int, c_void_p) Scontrol_function = CFUNCTYPE(c_int, c_void_p, c_int, c_void_p) # IOLOCK IOLOCK = c_void_p # IOFUNCTIONS class IOFUNCTIONS(Structure): _fields_ = [("read",Sread_function), ("write",Swrite_function), ("seek",Sseek_function), ("close",Sclose_function), ("seek64",Sseek64_function), ("reserved",intptr_t*2)] # IOENC ENC_UNKNOWN,ENC_OCTET,ENC_ASCII,ENC_ISO_LATIN_1,ENC_ANSI,ENC_UTF8,ENC_UNICODE_BE,ENC_UNICODE_LE,ENC_WCHAR = tuple(range(9)) IOENC = c_int # IOPOS class IOPOS(Structure): _fields_ = [("byteno",c_int64), ("charno",c_int64), ("lineno",c_int), ("linepos",c_int), ("reserved", intptr_t*2)] # IOSTREAM class IOSTREAM(Structure): _fields_ = [("bufp",c_char_p), ("limitp",c_char_p), ("buffer",c_char_p), ("unbuffer",c_char_p), ("lastc",c_int), ("magic",c_int), ("bufsize",c_int), ("flags",c_int), ("posbuf",IOPOS), ("position",POINTER(IOPOS)), ("handle",c_void_p), ("functions",IOFUNCTIONS), ("locks",c_int), ("mutex",IOLOCK), ("closure_hook",CFUNCTYPE(None, c_void_p)), ("closure",c_void_p), ("timeout",c_int), ("message",c_char_p), ("encoding",IOENC)] IOSTREAM._fields_.extend([("tee",IOSTREAM), ("mbstate",POINTER(mbstate_t)), ("reserved",intptr_t*6)]) Sopen_string = _lib.Sopen_string Sopen_string.argtypes = [POINTER(IOSTREAM), c_char_p, c_size_t, c_char_p] Sopen_string.restype = POINTER(IOSTREAM) Sclose = _lib.Sclose Sclose.argtypes = [POINTER(IOSTREAM)] PL_unify_stream = _lib.PL_unify_stream PL_unify_stream.argtypes = [term_t, POINTER(IOSTREAM)] #create an exit hook which captures the exit code for our cleanup function class ExitHook(object): def __init__(self): self.exit_code = None self.exception = None def hook(self): self._orig_exit = sys.exit sys.exit = self.exit def exit(self, code=0): self.exit_code = code self._orig_exit(code) _hook = ExitHook() _hook.hook() _isCleaned = False #create a property for Atom's delete method in order to avoid segmentation fault cleaned = property(_isCleaned) #register the cleanup function to be executed on system exit @atexit.register def cleanupProlog(): # only do something if prolog has been initialised if PL_is_initialised(None,None): # clean up the prolog system using the caught exit code # if exit code is None, the program exits normally and we can use 0 # instead. # TODO Prolog documentation says cleanup with code 0 may be interrupted # If the program has come to an end the prolog system should not # interfere with that. Therefore we may want to use 1 instead of 0. PL_cleanup(int(_hook.exit_code or 0)) _isCleaned = True