% Conversion for arithmetic evaluation %p2m(_OC,is(A, B), O):- !, p2m(_OC,eval(B, A), O). %p2m(_OC,is(V,Expr),let(V,Expr,'True')). p2m(_OC,(Head:-Body),O):- Body == true,!, O = (=(Head,'True')). p2m(_OC,(Head:-Body),O):- Body == fail,!, O = (=(Head,[empty])). p2m(OC,(Head:-Body),O):- p2m(Head,H),conjuncts_to_list(Body,List),maplist(p2m([progn|OC]),List,SP),!, O = ['=',H|SP]. p2m(OC,(:-Body),O):- !, conjuncts_to_list(Body,List),into_sequential([progn|OC],List,SP),!, O= exec(SP). p2m(OC,( ?- Body),O):- !, conjuncts_to_list(Body,List),into_sequential([progn|OC],List,SP),!, O= exec('?-'(SP)). %p2m(_OC,(Head:-Body),O):- conjuncts_to_list(Body,List),into_sequential(OC,List,SP),!,O=(=(Head,SP)). % Conversion for if-then-else constructs p2m(OC,(A->B;C),O):- !, p2m(OC,det_if_then_else(A,B,C),O). p2m(OC,(A;B),O):- !, p2m(OC,or(A,B),O). p2m(OC,(A*->B;C),O):- !, p2m(OC,if(A,B,C),O). p2m(OC,(A->B),O):- !, p2m(OC,det_if_then(A,B),O). p2m(OC,(A*->B),O):- !, p2m(OC,if(A,B),O). p2m(_OC,metta_defn(Eq,Self,H,B),'add-atom'(Self,[Eq,H,B])). p2m(_OC,metta_type,'get-type'). p2m(_OC,metta_atom,'get-atoms'). %p2m(_OC,get_metta_atom,'get-atoms'). p2m(_OC,clause(H,B), ==([=,H,B],'get-atoms'('&self'))). p2m(_OC,assert(X),'add-atom'('&self',X)). p2m(_OC,assertz(X),'add-atom'('&self',X)). p2m(_OC,asserta(X),'add-atom'('&self',X)). p2m(_OC,retract(X),'remove-atom'('&self',X)). p2m(_OC,retractall(X),'remove-all-atoms'('&self',X)). % The catch-all case for the other compound terms. %p2m(_OC,I,O):- I=..[F|II],maplist(p2m,[F|II],OO),O=..OO. % It will break down compound terms into their functor and arguments and apply p2m recursively p2m(OC,I, O):- compound(I), I =.. [F|II], % univ operator to convert between a term and a list consisting of functor name and arguments maplist(p2m([F|OC]), II, OO), % applying p2m recursively on each argument of the compound term into_hyphens(F,FF), O = [FF|OO]. % constructing the output term with the converted arguments % In the context of this conversion predicate, each branch of the p2m predicate % is handling a different type or structure of term, translating it into its % equivalent representation in another logic programming language named MeTTa. % The actual transformations are dependent on the correspondence between Prolog % constructs and MeTTa constructs, as defined by the specific implementations % of Prolog and MeTTa being used. prolog_to_metta(V, D) :- % Perform the translation from Prolog to MeTTa p2m([progn], V, D),!. % Define predicates to support the transformation from Prolog to MeTTa syntax % (Continuing the translation from Prolog to MeTTa syntax as per the given code) % Handle the case where the body is a conjunction of terms into_sequential(OC,Body, SP) :- % Check if Body is not a list and convert conjunctions in Body to a list of conjuncts. \+ is_list(Body), conjuncts_to_list(Body, List),