;; MeTTaLog ; ; deb12user@DEBIAN12B:~/metta-wam$ time mettalog tests/baseline_compat/hyperon-mettalog_sanity/first_answer_long.metta ; [(: a A) (: a B) (: abc (Implication (AndLink A B) C)) (: cde (Implication (OrLink C D) E)) (: (ConjunctionEliminationLeft (ConjunctionIntroduction a a)) A) (: (ConjunctionEliminationLeft (ConjunctionIntroduction a a)) A)] ; % 626 695 inferences 0.194 CPU in 0.199 seconds (97% CPU 3231083 Lips) ; ; DEBUG Exit code of METTA_CMD: 7 ; ; real 0m2.132s ; user 0m2.095s ; sys 0m0.041s ; deb12user@DEBIAN12B:~/metta-wam$ ;; MeTTa in Rust ; ; deb12user@DEBIAN12B:~/metta-wam$ time metta tests/baseline_compat/hyperon-mettalog_sanity/first_answer_long.metta ; [(: cde (Implication (OrLink C D) E)) (: abc (Implication (AndLink A B) C)) (: (ConjunctionEliminationRight (ConjunctionIntroduction cde cde)) (Implication (OrLink C D) E)) (: (ConjunctionEliminationRight (ConjunctionIntroduction cde a)) B) (: a A) (: a B)] ; ; real 2m37.504s ; user 2m36.943s ; sys 0m0.540s ; deb12user@DEBIAN12B:~/metta-wam$ ;; Import modules ;; Define Nat (: Nat Type) (: Z Nat) (: S (-> Nat Nat)) ;; Enumerate all programs up to a given depth that are consistent with ;; the query ;; using the given axiom non-deterministic functions and rules. ;; ;; The arguments are: ;; ;; $query: an Atom under the form (: TERM TYPE). The atom may contain ;; free variables within TERM and TYPE to form various sort of ;; queries ;; such as: ;; 1. Backward chaining: (: $term (Inheritance $x Mammal)) ;; 2. Forward chaining: (: ($rule $premise AXIOM) $type) ;; 3. Mixed chaining: (: ($rule $premise AXIOM) (Inheritance $x Mammal)) ;; 4. Type checking: (: TERM TYPE) ;; 5. Type inference: (: TERM $type) ;; ;; $kb: a nullary function to axiom ;; to non-deterministically pick up ;; an axiom. An axiom is an Atom of the form (: TERM TYPE). ;; ;; $rb: a nullary function to rule ;; to non-deterministically pick up a ;; rule. A rule is a function mapping premises to conclusion ;; ;; where premises and conclusion have the form (: TERM TYPE). ;; ;; $depth: a Nat representing the maximum depth of the generated ;; programs. ;; ;; TODO: recurse over curried rules instead of duplicating code over ;; tuples. (: synthesize (-> $a (-> $kt) (-> $rt) Nat $a)) ;; Nullary rule (axiom) (= (synthesize $query $kb $rb $depth) (let $query ($kb) $query)) ;; Unary rule (= (synthesize $query $kb $rb (S $k)) (let* (((: $ructor (-> $premise $conclusion)) ($rb)) ((: ($ructor $proof) $conclusion) $query) ((: $proof $premise) (synthesize (: $proof $premise) $kb $rb $k))) $query)) ;; Binary rule (= (synthesize $query $kb $rb (S $k)) (let* (((: $ructor (-> $premise1 $premise2 $conclusion)) ($rb)) ((: ($ructor $proof1 $proof2) $conclusion) $query) ((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) ((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k))) $query)) ;; Trinary rule (= (synthesize $query $kb $rb (S $k)) (let* (((: $ructor (-> $premise1 $premise2 $premise3 $conclusion)) ($rb)) ((: ($ructor $proof1 $proof2 $proof3) $conclusion) $query) ((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) ((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k)) ((: $proof3 $premise3) (synthesize (: $proof3 $premise3) $kb $rb $k))) $query)) ;; Quaternary rule (= (synthesize $query $kb $rb (S $k)) (let* (((: $ructor (-> $premise1 $premise2 $premise3 $premise4 $conclusion)) ($rb)) ((: ($ructor $proof1 $proof2 $proof3 $proof4) $conclusion) $query) ((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) ((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k)) ((: $proof3 $premise3) (synthesize (: $proof3 $premise3) $kb $rb $k)) ((: $proof4 $premise4) (synthesize (: $proof4 $premise4) $kb $rb $k))) $query)) ;; Quintenary rule (= (synthesize $query $kb $rb (S $k)) (let* (((: $ructor (-> $premise1 $premise2 $premise3 $premise4 $premise5 $conclusion)) ($rb)) ((: ($ructor $proof1 $proof2 $proof3 $proof4 $proof5) $conclusion) $query) ((: $proof1 $premise1) (synthesize (: $proof1 $premise1) $kb $rb $k)) ((: $proof2 $premise2) (synthesize (: $proof2 $premise2) $kb $rb $k)) ((: $proof3 $premise3) (synthesize (: $proof3 $premise3) $kb $rb $k)) ((: $proof4 $premise4) (synthesize (: $proof4 $premise4) $kb $rb $k)) ((: $proof5 $premise5) (synthesize (: $proof5 $premise5) $kb $rb $k))) $query)) (: kb (-> Atom)) (= (kb) (: a A)) (= (kb) (: a B)) (= (kb) (: abc (Implication (AndLink A B) C))) (= (kb) (: cde (Implication (OrLink C D) E))) (: rb (-> Atom)) (= (rb) (: ModusPonens (-> (ImplicationLink $p $q) $p $q))) (= (rb) (: Deduction (-> (ImplicationLink $p $q) (ImplicationLink $q $r) (ImplicationLink $p $r)))) (= (rb) (: DisjunctiveSyllogism (-> (OrLink $p $q) (NotLink $p) $q))) (= (rb) (: DisjunctiveSyllogism (-> (OrLink $p $q) (NotLink $q) $p))) (= (rb) (: ConjunctionIntroduction (-> $p $q (AndLink $p $q)))) (= (rb) (: ConjunctionEliminationLeft (-> (AndLink $p $q) $p))) (= (rb) (: ConjunctionEliminationRight (-> (AndLink $p $q) $q))) (= (rb) (: DisjunctionIntroduction (-> $p $q (OrLink $p $q)))) ;!(assertEqual ; (synthesize (: $term $type) kb rb (S (S Z))) ; ...) ; !(let n o p) (: first-few (-> Number Atom Atom)) (= (first-few $n $a) (if (== $n 0) (let n o p) (if (== $n 1) (car-atom $a) (let $t (cdr-atom $a) (superpose ((car-atom $a) (first-few (- $n 1) $t))))))) (: limit (-> Number Atom Atom)) (= (limit $n $x) (let $a (collapse $x) (first-few $n $a))) ; !(limit 1 (synthesize (: $term $type) kb rb (S (S Z)))) ; !(limit 6 (synthesize (: $term $type) kb rb (S (S Z)))) !(limit 6 (unique (synthesize (: $term $type) kb rb (S (S Z))))) ; (: a A) ; (: a B) ; (: abc (Implication (AndLink A B) C)) ; (: cde (Implication (OrLink C D) E)) ; (: (ConjunctionEliminationLeft (ConjunctionIntroduction a a)) A) ; (: (ConjunctionEliminationLeft (ConjunctionIntroduction a a)) A)