;; Simple AI service composition example. The backward chainer is ;; used to synthesize the composition of three AI services, spleeter, ;; vocals-translator and mixer, to turn an English song into a Chinese ;; song. ;;;;;;;;; ;; Nat ;; ;;;;;;;;; ;; Define Nat (: Nat Type) (: Z Nat) (: S (-> Nat Nat)) ;; Define <= (: <= (-> $a $a Bool)) (= (<= $x $y) (or (< $x $y) (== $x $y))) ;; Define cast functions between Nat and Number (: fromNumber (-> Number Nat)) (= (fromNumber $n) (if (<= $n 0) Z (S (fromNumber (- $n 1))))) (: fromNat (-> Nat Number)) (= (fromNat Z) 0) (= (fromNat (S $k)) (+ 1 (fromNat $k))) ;;;;;;;;;;;;;;;;;;;;; ;; De Bruijn Index ;; ;;;;;;;;;;;;;;;;;;;;; ;; Define DeBruijn type (: DeBruijn Type) ;; Define DeBruijn constructors (: z DeBruijn) ; Zero (: s (-> DeBruijn DeBruijn)) ; Successor ;;;;;;;;;; ;; List ;; ;;;;;;;;;; ;; Declaration of List data type and constructors (: List (-> $a Type)) (: Nil (List $a)) (: Cons (-> $a (List $a) (List $a))) ;;;;;;;;;;;;;;;;;;;;; ;; Match over list ;; ;;;;;;;;;;;;;;;;;;;;; ;; Similar to match but takes a list of terms instead of a space. (: match' (-> (List Atom) $a $a $a)) (= (match' Nil $pattern $rewrite) (empty)) (= (match' (Cons $head $tail) $pattern $rewrite) (let $pattern $head $rewrite)) (= (match' (Cons $head $tail) $pattern $rewrite) (match' $tail $pattern $rewrite)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Knowledge and rule base ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; !(bind! &kb (new-space)) ;;;;;;;;;;;;;; ;; Spleeter ;; ;;;;;;;;;;;;;; ;; Constructor !(add-atom &kb (: sound-spleeter.MkDTLOutput (-> (: $l NaturalLanguage) (-> (: $voc (VocalsIn $l)) (-> (: $inst Instrumental) (sound-spleeter.DTLOutput $l)))))) ;; Access vocals !(add-atom &kb (: sound-spleeter.DTLOutput.vocals (-> (: $out (sound-spleeter.DTLOutput $l)) (VocalsIn $l)))) ;; Access accomp !(add-atom &kb (: sound-spleeter.DTLOutput.accomp (-> (: $out (sound-spleeter.DTLOutput $l)) Instrumental))) ;; Method !(add-atom &kb (: sound-spleeter.spleeter (-> (: $song (SongIn $l)) (sound-spleeter.DTLOutput $l)))) ;;;;;;;;;;;;;;;;;;;;;;; ;; Vocals Translator ;; ;;;;;;;;;;;;;;;;;;;;;;; ;; Method !(add-atom &kb (: vocals-translator.translate (-> (: $en-vocals (VocalsIn "English")) (VocalsIn "Chinese")))) ;;;;;;;;;;; ;; Mixer ;; ;;;;;;;;;;; ;; Method !(add-atom &kb (: mixer.mix (-> (: $inst Instrumental) (-> (: $voc (VocalsIn $l)) (SongIn $l))))) ;;;;;;;;;;;;;;;;;;;;;; ;; Backward chainer ;; ;;;;;;;;;;;;;;;;;;;;;; ;; The following code is copied from NEXT. ;; Curried Backward Chainer with lambda abstraction and dependent ;; types. A lambda abstraction is represented by ;; ;; (λ ) ;; ;; where is a De Bruijn index as define above, such as z or ;; (s z), and is a term possibly containing . Note ;; that the use of De Bruijn index in lambda abstraction is somewhat ;; unconventional here. It differs from what is described in ;; https://en.wikipedia.org/wiki/De_Bruijn_index in three ways: ;; ;; 1. The index is explicitely attached to a λ by being its first ;; argument. For instance the lambda term λx.x, which would ;; traditionally be represented by λ1 using De Bruijn index, would ;; be represented here by the MeTTa term (λ z z). ;; ;; 2. As seen in the example above the index here starts at 0, ;; represented by z, instead of 1. ;; ;; 3. The index increases as the lambda abstraction gets deeper. For ;; instance λx.λy.x, which would traditionally be represented by ;; λλ2 using De Bruijn index, is represented here by the MeTTa term ;; (λ z (λ (s z) z). ;; ;; This differences are due to the way the proof abstraction recursive ;; step is defined in the bc, as well as the need for having non ;; overlapping pattern matching between the two recursive steps. ;; Specifically, if λ had only one argument, then (λ ) would ;; overlap with ( ). Having λ take 2 arguments instead of 1 ;; has the disadvantage of making lambda abstraction not as compact. ;; On the flip side, the benefit is that the scope of an index is ;; easier to track. ;; ;; The arguments of the backward chainer are: ;; ;; * Knowledge base: pointer to a space containing axioms and rules in ;; the format (: ). Note that rules are explicitely ;; curried, meaning that a rule with two premises is represented by ;; ;; (: (-> (-> ))) ;; ;; In addition, each premise must be an inline typing relationship, ;; to represent dependent types. It should be noted that such ;; typing relationship must be provided even if the witness is not ;; present in the rest of the definition. For instance ;; would have the format ;; ;; (: ) ;; ;; * Environment: a list of typing relationship between De Bruijn ;; index and type, such as ;; ;; (Cons (: z String) (Cons (: (s z) Number) Nil)) ;; ;; * De Bruijn Index: De Bruijn Index to use if a lambda abstraction ;; is introduced. ;; ;; * Maximum depth: maximum depth of the generated proof tree. ;; ;; * Query: a metta term of the form (: ) where ;; and may contain free variables that may be ;; filled by the backward chainer. Note that for arguments of ;; applications must be type annotated (unknowns types are of course ;; allowed). For instance the following query ;; ;; (: (ModusPonens ab) $thrm) ;; ;; would not work, instead one needs to provide ;; ;; (: (ModusPonens (: ab $lemma)) $thrm) ;; ;; A result is the query with its variables grounded, fully or ;; partially. If multiple results are possible, they are returned as ;; a superposition. ;; ;; As explained, the proof arguments must be type annotated. Without ;; such type annotation, lambda abstraction sometimes leads to ;; incorrect results. It is suspected to come from the fact that ;; otherwise the proof application recursive step loses bindings about ;; the premise. Having annotated proof is however a good thing, to ;; display a proof tree and to have an indepth view into the proof. ;; In order to remove (resp. add) type annotation one can use ;; remove-type-annotation (resp. add-type-annotation). (: bc (-> $a ; Knowledge base space $b ; Environment DeBruijn ; De Bruijn Index Nat ; Maximum depth $c ; Query $c)) ; Result ;; Base cases ;; Match the knowledge base (= (bc $kb $env $idx $_ (: $prf $thrm)) (match $kb (: $prf $thrm) (: $prf $thrm))) ;; Match the environment (= (bc $kb $env $idx $_ (: $prf $thrm)) (match' $env (: $prf $thrm) (: $prf $thrm))) ;; Recursive steps ;; Proof application (= (bc $kb $env $idx (S $k) (: ($prfabs (: $prfarg $prms)) $thrm)) (let* (((: $prfabs (-> (: $prfarg $prms) $thrm)) (bc $kb $env $idx $k (: $prfabs (-> (: $prfarg $prms) $thrm)))) ((: $prfarg $prms) (bc $kb $env $idx $k (: $prfarg $prms)))) (: ($prfabs (: $prfarg $prms)) $thrm))) ;; Proof abstraction (= (bc $kb $env $idx (S $k) (: (λ $idx $prfbdy) (-> (: $prfarg $prms) $thrm))) (let (: $prfbdy $thrm) (bc $kb (Cons (: $idx $prms) $env) (s $idx) $k (: $prfbdy $thrm)) (: (λ $idx $prfbdy) (-> (: $prfarg $prms) $thrm)))) ;;;;;;;;;;;;;;; ;; Reduction ;; ;;;;;;;;;;;;;;; ;; Reduction rules to simplify proofs and reduce redundancy ;; Identity function (= ((λ $x $x) $y) $y) ;; Constant function (= ((λ (s z) z) $x) z) ;; Application function. This is incorrect because $x is supposed not ;; to contain (s z) and we have no way to guaranty that via pattern ;; matching. This incorrectness is probably tolerable because such ;; situation may not arise here. (= ((λ (s z) ((s z) $x)) $y) ($y $x)) ;;;;;;;;;; ;; Test ;; ;;;;;;;;;; ;; Partially synthesize the English to Chinese singing AI service ;; composition by filling holes in a provided composition. The holes ;; are $accomp, $vocals and $spleeter. ;; ;; WARNING: this may takes several hours (or days) and eat up all your ;; memory. The output is also going to be gigantic, so you may want ;; to redirect it to a file. !(bc &kb Nil z (fromNumber 6) (: (λ z ((λ (s z) ((mixer.mix $accomp) $vocals)) $spleeter)) (-> (: $s (SongIn "English")) (SongIn "Chinese"))))