;; MeTTa port for deduction PLN rule ;; as the entail relationship, ⊢ ;; ;; (≞ P ptv) ;; (≞ Q qtv) ;; (≞ R rtv) ;; (≞ (→ P Q) tv1) ;; (≞ (→ Q R) tv2) ;; ⊢ ;; (≞ (→ P R) TV) ;; ;; where ptv, qtv, rtv, tv1 and tv2 are truth values of the ;; premises P, Q, R, (→ P Q) and (→ Q R) respectively. ;; TV represents the resulting truth value of the conclusion. ;; Import formula functions !(import! &self metta:common:formula:DeductionFormula) ;;;;;;;;;;;;;;;;;;;;; ;; Rule Definition ;; ;;;;;;;;;;;;;;;;;;;;; (⊢ ;; premises (≞ $P $ptv) (≞ $Q $qtv) (≞ $R $rtv) (≞ (→ $P $Q) $pqtv) (≞ (→ $Q $R) $qrtv) ;; conclusion (≞ (→ $P $R) (deduction-formula $ptv $qtv $rtv $pqtv $qrtv)))