; ; generated: 9 November 1989 ; ; option(s): ; ; ; ; mu ; ; ; ; derived from Douglas R. Hofstadter, "Godel, Escher, Bach," pages 33-35. ; ; ; ; prove "mu-math" theorem muiiu (= (top) (mu)) (= (mu) ( (theorem (:: m u i i u) 5 $_) (set-det))) (= (theorem (m i) $_ ( (a m i))) True) (= (theorem $R $Depth (Cons (Cons $N $R) $P)) ( (> $Depth 0) (is $D (- $Depth 1)) (theorem $S $D $P) (rule $N $S $R))) (= (rule 1 $S $R) (rule1 $S $R)) (= (rule 2 $S $R) (rule2 $S $R)) (= (rule 3 $S $R) (rule3 $S $R)) (= (rule 4 $S $R) (rule4 $S $R)) (= (rule1 (i) (i u)) True) (= (rule1 (Cons $H $X) (Cons $H $Y)) (rule1 $X $Y)) (= (rule2 (Cons m $X) (Cons m $Y)) (my-append $X $X $Y)) (= (rule3 (Cons i (Cons i (Cons i $X))) (Cons u $X)) True) (= (rule3 (Cons $H $X) (Cons $H $Y)) (rule3 $X $Y)) (= (rule4 (Cons u (Cons u $X)) $X) True) (= (rule4 (Cons $H $X) (Cons $H $Y)) (rule4 $X $Y)) (= (my_append () $X $X) True) (= (my-append (Cons $A $B) $X (Cons $A $B1)) (my-append $B $X $B1))