import operator
import sys
from .libmp import int_types, mpf_hash, bitcount, from_man_exp, HASH_MODULUS

new = object.__new__

def create_reduced(p, q, _cache={}):
    key = p, q
    if key in _cache:
        return _cache[key]
    x, y = p, q
    while y:
        x, y = y, x % y
    if x != 1:
        p //= x
        q //= x
    v = new(mpq)
    v._mpq_ = p, q
    # Speedup integers, half-integers and other small fractions
    if q <= 4 and abs(key[0]) < 100:
        _cache[key] = v
    return v

class mpq(object):
    """
    Exact rational type, currently only intended for internal use.
    """

    __slots__ = ["_mpq_"]

    def __new__(cls, p, q=1):
        if type(p) is tuple:
            p, q = p
        elif hasattr(p, '_mpq_'):
            p, q = p._mpq_
        return create_reduced(p, q)

    def __repr__(s):
        return "mpq(%s,%s)" % s._mpq_

    def __str__(s):
        return "(%s/%s)" % s._mpq_

    def __int__(s):
        a, b = s._mpq_
        return a // b

    def __nonzero__(s):
        return bool(s._mpq_[0])

    __bool__ = __nonzero__

    def __hash__(s):
        a, b = s._mpq_
        if sys.version_info >= (3, 2):
            inverse = pow(b, HASH_MODULUS-2, HASH_MODULUS)
            if not inverse:
                h = sys.hash_info.inf
            else:
                h = (abs(a) * inverse) % HASH_MODULUS
            if a < 0: h = -h
            if h == -1: h = -2
            return h
        else:
            if b == 1:
                return hash(a)
            # Power of two: mpf compatible hash
            if not (b & (b-1)):
                return mpf_hash(from_man_exp(a, 1-bitcount(b)))
            return hash((a,b))

    def __eq__(s, t):
        ttype = type(t)
        if ttype is mpq:
            return s._mpq_ == t._mpq_
        if ttype in int_types:
            a, b = s._mpq_
            if b != 1:
                return False
            return a == t
        return NotImplemented

    def __ne__(s, t):
        ttype = type(t)
        if ttype is mpq:
            return s._mpq_ != t._mpq_
        if ttype in int_types:
            a, b = s._mpq_
            if b != 1:
                return True
            return a != t
        return NotImplemented

    def _cmp(s, t, op):
        ttype = type(t)
        if ttype in int_types:
            a, b = s._mpq_
            return op(a, t*b)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return op(a*d, b*c)
        return NotImplementedError

    def __lt__(s, t): return s._cmp(t, operator.lt)
    def __le__(s, t): return s._cmp(t, operator.le)
    def __gt__(s, t): return s._cmp(t, operator.gt)
    def __ge__(s, t): return s._cmp(t, operator.ge)

    def __abs__(s):
        a, b = s._mpq_
        if a >= 0:
            return s
        v = new(mpq)
        v._mpq_ = -a, b
        return v

    def __neg__(s):
        a, b = s._mpq_
        v = new(mpq)
        v._mpq_ = -a, b
        return v

    def __pos__(s):
        return s

    def __add__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*d+b*c, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            v = new(mpq)
            v._mpq_ = a+b*t, b
            return v
        return NotImplemented

    __radd__ = __add__

    def __sub__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*d-b*c, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            v = new(mpq)
            v._mpq_ = a-b*t, b
            return v
        return NotImplemented

    def __rsub__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(b*c-a*d, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            v = new(mpq)
            v._mpq_ = b*t-a, b
            return v
        return NotImplemented

    def __mul__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*c, b*d)
        if ttype in int_types:
            a, b = s._mpq_
            return create_reduced(a*t, b)
        return NotImplemented

    __rmul__ = __mul__

    def __div__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(a*d, b*c)
        if ttype in int_types:
            a, b = s._mpq_
            return create_reduced(a, b*t)
        return NotImplemented

    def __rdiv__(s, t):
        ttype = type(t)
        if ttype is mpq:
            a, b = s._mpq_
            c, d = t._mpq_
            return create_reduced(b*c, a*d)
        if ttype in int_types:
            a, b = s._mpq_
            return create_reduced(b*t, a)
        return NotImplemented

    def __pow__(s, t):
        ttype = type(t)
        if ttype in int_types:
            a, b = s._mpq_
            if t:
                if t < 0:
                    a, b, t = b, a, -t
                v = new(mpq)
                v._mpq_ = a**t, b**t
                return v
            raise ZeroDivisionError
        return NotImplemented


mpq_1 = mpq((1,1))
mpq_0 = mpq((0,1))
mpq_1_2 = mpq((1,2))
mpq_3_2 = mpq((3,2))
mpq_1_4 = mpq((1,4))
mpq_1_16 = mpq((1,16))
mpq_3_16 = mpq((3,16))
mpq_5_2 = mpq((5,2))
mpq_3_4 = mpq((3,4))
mpq_7_4 = mpq((7,4))
mpq_5_4 = mpq((5,4))


# Register with "numbers" ABC
#     We do not subclass, hence we do not use the @abstractmethod checks. While
#     this is less invasive it may turn out that we do not actually support
#     parts of the expected interfaces.  See
#     http://docs.python.org/2/library/numbers.html for list of abstract
#     methods.
try:
    import numbers
    numbers.Rational.register(mpq)
except ImportError:
    pass