fdZgdZdevreddZGddeZGddeZGd d e Z Gd d eZ Gd deZ Gdde eZGddeZy)a Exceptions and Warnings (:mod:`numpy.exceptions`) ================================================= General exceptions used by NumPy. Note that some exceptions may be module specific, such as linear algebra errors. .. versionadded:: NumPy 1.25 The exceptions module is new in NumPy 1.25. Older exceptions remain available through the main NumPy namespace for compatibility. .. currentmodule:: numpy.exceptions Warnings -------- .. autosummary:: :toctree: generated/ ComplexWarning Given when converting complex to real. VisibleDeprecationWarning Same as a DeprecationWarning, but more visible. RankWarning Issued when the design matrix is rank deficient. Exceptions ---------- .. autosummary:: :toctree: generated/ AxisError Given when an axis was invalid. DTypePromotionError Given when no common dtype could be found. TooHardError Error specific to `numpy.shares_memory`. )ComplexWarningVisibleDeprecationWarningModuleDeprecationWarning TooHardError AxisErrorDTypePromotionError _is_loadedz'Reloading numpy._globals is not allowedTceZdZdZy)rz The warning raised when casting a complex dtype to a real dtype. As implemented, casting a complex number to a real discards its imaginary part, but this behavior may not be what the user actually wants. N__name__ __module__ __qualname____doc__Y/var/lib/jenkins/workspace/mettalog/venv/lib/python3.12/site-packages/numpy/exceptions.pyrr0  rrceZdZdZy)raModule deprecation warning. .. warning:: This warning should not be used, since nose testing is not relevant anymore. The nose tester turns ordinary Deprecation warnings into test failures. That makes it hard to deprecate whole modules, because they get imported by default. So this is a special Deprecation warning that the nose tester will let pass without making tests fail. Nr rrrrr;s   rrceZdZdZy)rzVisible deprecation warning. By default, python will not show deprecation warnings, so this class can be used when a very visible warning is helpful, for example because the usage is most likely a user bug. Nr rrrrrLrrrceZdZdZy) RankWarningzpMatrix rank warning. Issued by polynomial functions when the design matrix is rank deficient. Nr rrrrrWs   rrceZdZdZy)rzmax_work was exceeded. This is raised whenever the maximum number of candidate solutions to consider specified by the ``max_work`` parameter is exceeded. Assigning a finite number to max_work may have caused the operation to fail. Nr rrrrras  rrc"eZdZdZdZddZdZy)ra5Axis supplied was invalid. This is raised whenever an ``axis`` parameter is specified that is larger than the number of array dimensions. For compatibility with code written against older numpy versions, which raised a mixture of :exc:`ValueError` and :exc:`IndexError` for this situation, this exception subclasses both to ensure that ``except ValueError`` and ``except IndexError`` statements continue to catch ``AxisError``. .. versionadded:: 1.13 Parameters ---------- axis : int or str The out of bounds axis or a custom exception message. If an axis is provided, then `ndim` should be specified as well. ndim : int, optional The number of array dimensions. msg_prefix : str, optional A prefix for the exception message. Attributes ---------- axis : int, optional The out of bounds axis or ``None`` if a custom exception message was provided. This should be the axis as passed by the user, before any normalization to resolve negative indices. .. versionadded:: 1.22 ndim : int, optional The number of array dimensions or ``None`` if a custom exception message was provided. .. versionadded:: 1.22 Examples -------- >>> import numpy as np >>> array_1d = np.arange(10) >>> np.cumsum(array_1d, axis=1) Traceback (most recent call last): ... numpy.exceptions.AxisError: axis 1 is out of bounds for array of dimension 1 Negative axes are preserved: >>> np.cumsum(array_1d, axis=-2) Traceback (most recent call last): ... numpy.exceptions.AxisError: axis -2 is out of bounds for array of dimension 1 The class constructor generally takes the axis and arrays' dimensionality as arguments: >>> print(np.exceptions.AxisError(2, 1, msg_prefix='error')) error: axis 2 is out of bounds for array of dimension 1 Alternatively, a custom exception message can be passed: >>> print(np.exceptions.AxisError('Custom error message')) Custom error message axisndim_msgNcn||cxurnn||_d|_d|_y||_||_||_y)N)rrr)selfrr msg_prefixs r__init__zAxisError.__init__s4 : %DIDIDI"DIDIDIrc|j}|j}||cxur |jSd|d|}|j|jd|}|S)Nzaxis z) is out of bounds for array of dimension z: r)rrrmsgs r__str__zAxisError.__str__scyyyy 4 99  $HOCyy$ 2cU+Jr)NN)r r r r __slots__r r#rrrrrms@D)I  rrceZdZdZy)raMultiple DTypes could not be converted to a common one. This exception derives from ``TypeError`` and is raised whenever dtypes cannot be converted to a single common one. This can be because they are of a different category/class or incompatible instances of the same one (see Examples). Notes ----- Many functions will use promotion to find the correct result and implementation. For these functions the error will typically be chained with a more specific error indicating that no implementation was found for the input dtypes. Typically promotion should be considered "invalid" between the dtypes of two arrays when `arr1 == arr2` can safely return all ``False`` because the dtypes are fundamentally different. Examples -------- Datetimes and complex numbers are incompatible classes and cannot be promoted: >>> import numpy as np >>> np.result_type(np.dtype("M8[s]"), np.complex128) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... DTypePromotionError: The DType could not be promoted by . This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is `object`. The full list of DTypes is: (, ) For example for structured dtypes, the structure can mismatch and the same ``DTypePromotionError`` is given when two structured dtypes with a mismatch in their number of fields is given: >>> dtype1 = np.dtype([("field1", np.float64), ("field2", np.int64)]) >>> dtype2 = np.dtype([("field1", np.float64)]) >>> np.promote_types(dtype1, dtype2) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... DTypePromotionError: field names `('field1', 'field2')` and `('field1',)` mismatch. Nr rrrrrs -\ rrN)r__all__globals RuntimeErrorrRuntimeWarningrDeprecationWarningr UserWarningrrr ValueError IndexErrorr TypeErrorrrrrr/s F 879 @ AA   ^  1 "   .   <  Z JZz/ )/ r