# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. from __future__ import annotations from typing import Union, Mapping, cast import httpx from ... import _legacy_response from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes from ..._utils import ( extract_files, maybe_transform, deepcopy_minimal, async_maybe_transform, ) from ..._compat import cached_property from ..._resource import SyncAPIResource, AsyncAPIResource from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper from ...types.audio import translation_create_params from ..._base_client import make_request_options from ...types.audio_model import AudioModel from ...types.audio.translation import Translation __all__ = ["Translations", "AsyncTranslations"] class Translations(SyncAPIResource): @cached_property def with_raw_response(self) -> TranslationsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return TranslationsWithRawResponse(self) @cached_property def with_streaming_response(self) -> TranslationsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return TranslationsWithStreamingResponse(self) def create( self, *, file: FileTypes, model: Union[str, AudioModel], prompt: str | NotGiven = NOT_GIVEN, response_format: str | NotGiven = NOT_GIVEN, temperature: float | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> Translation: """ Translates audio into English. Args: file: The audio file object (not file name) translate, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. model: ID of the model to use. Only `whisper-1` (which is powered by our open source Whisper V2 model) is currently available. prompt: An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should be in English. response_format: The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`. temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ body = deepcopy_minimal( { "file": file, "model": model, "prompt": prompt, "response_format": response_format, "temperature": temperature, } ) files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) # It should be noted that the actual Content-Type header that will be # sent to the server will contain a `boundary` parameter, e.g. # multipart/form-data; boundary=---abc-- extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} return self._post( "/audio/translations", body=maybe_transform(body, translation_create_params.TranslationCreateParams), files=files, options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Translation, ) class AsyncTranslations(AsyncAPIResource): @cached_property def with_raw_response(self) -> AsyncTranslationsWithRawResponse: """ This property can be used as a prefix for any HTTP method call to return the the raw response object instead of the parsed content. For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers """ return AsyncTranslationsWithRawResponse(self) @cached_property def with_streaming_response(self) -> AsyncTranslationsWithStreamingResponse: """ An alternative to `.with_raw_response` that doesn't eagerly read the response body. For more information, see https://www.github.com/openai/openai-python#with_streaming_response """ return AsyncTranslationsWithStreamingResponse(self) async def create( self, *, file: FileTypes, model: Union[str, AudioModel], prompt: str | NotGiven = NOT_GIVEN, response_format: str | NotGiven = NOT_GIVEN, temperature: float | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> Translation: """ Translates audio into English. Args: file: The audio file object (not file name) translate, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. model: ID of the model to use. Only `whisper-1` (which is powered by our open source Whisper V2 model) is currently available. prompt: An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should be in English. response_format: The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`. temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ body = deepcopy_minimal( { "file": file, "model": model, "prompt": prompt, "response_format": response_format, "temperature": temperature, } ) files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) # It should be noted that the actual Content-Type header that will be # sent to the server will contain a `boundary` parameter, e.g. # multipart/form-data; boundary=---abc-- extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} return await self._post( "/audio/translations", body=await async_maybe_transform(body, translation_create_params.TranslationCreateParams), files=files, options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Translation, ) class TranslationsWithRawResponse: def __init__(self, translations: Translations) -> None: self._translations = translations self.create = _legacy_response.to_raw_response_wrapper( translations.create, ) class AsyncTranslationsWithRawResponse: def __init__(self, translations: AsyncTranslations) -> None: self._translations = translations self.create = _legacy_response.async_to_raw_response_wrapper( translations.create, ) class TranslationsWithStreamingResponse: def __init__(self, translations: Translations) -> None: self._translations = translations self.create = to_streamed_response_wrapper( translations.create, ) class AsyncTranslationsWithStreamingResponse: def __init__(self, translations: AsyncTranslations) -> None: self._translations = translations self.create = async_to_streamed_response_wrapper( translations.create, )