from collections import defaultdict from sympy.assumptions.ask import Q from sympy.core import (Add, Mul, Pow, Number, NumberSymbol, Symbol) from sympy.core.numbers import ImaginaryUnit from sympy.functions.elementary.complexes import Abs from sympy.logic.boolalg import (Equivalent, And, Or, Implies) from sympy.matrices.expressions import MatMul # APIs here may be subject to change ### Helper functions ### def allargs(symbol, fact, expr): """ Apply all arguments of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import allargs >>> from sympy.abc import x, y >>> allargs(x, Q.negative(x) | Q.positive(x), x*y) (Q.negative(x) | Q.positive(x)) & (Q.negative(y) | Q.positive(y)) """ return And(*[fact.subs(symbol, arg) for arg in expr.args]) def anyarg(symbol, fact, expr): """ Apply any argument of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import anyarg >>> from sympy.abc import x, y >>> anyarg(x, Q.negative(x) & Q.positive(x), x*y) (Q.negative(x) & Q.positive(x)) | (Q.negative(y) & Q.positive(y)) """ return Or(*[fact.subs(symbol, arg) for arg in expr.args]) def exactlyonearg(symbol, fact, expr): """ Apply exactly one argument of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import exactlyonearg >>> from sympy.abc import x, y >>> exactlyonearg(x, Q.positive(x), x*y) (Q.positive(x) & ~Q.positive(y)) | (Q.positive(y) & ~Q.positive(x)) """ pred_args = [fact.subs(symbol, arg) for arg in expr.args] res = Or(*[And(pred_args[i], *[~lit for lit in pred_args[:i] + pred_args[i+1:]]) for i in range(len(pred_args))]) return res ### Fact registry ### class ClassFactRegistry: """ Register handlers against classes. Explanation =========== ``register`` method registers the handler function for a class. Here, handler function should return a single fact. ``multiregister`` method registers the handler function for multiple classes. Here, handler function should return a container of multiple facts. ``registry(expr)`` returns a set of facts for *expr*. Examples ======== Here, we register the facts for ``Abs``. >>> from sympy import Abs, Equivalent, Q >>> from sympy.assumptions.sathandlers import ClassFactRegistry >>> reg = ClassFactRegistry() >>> @reg.register(Abs) ... def f1(expr): ... return Q.nonnegative(expr) >>> @reg.register(Abs) ... def f2(expr): ... arg = expr.args[0] ... return Equivalent(~Q.zero(arg), ~Q.zero(expr)) Calling the registry with expression returns the defined facts for the expression. >>> from sympy.abc import x >>> reg(Abs(x)) {Q.nonnegative(Abs(x)), Equivalent(~Q.zero(x), ~Q.zero(Abs(x)))} Multiple facts can be registered at once by ``multiregister`` method. >>> reg2 = ClassFactRegistry() >>> @reg2.multiregister(Abs) ... def _(expr): ... arg = expr.args[0] ... return [Q.even(arg) >> Q.even(expr), Q.odd(arg) >> Q.odd(expr)] >>> reg2(Abs(x)) {Implies(Q.even(x), Q.even(Abs(x))), Implies(Q.odd(x), Q.odd(Abs(x)))} """ def __init__(self): self.singlefacts = defaultdict(frozenset) self.multifacts = defaultdict(frozenset) def register(self, cls): def _(func): self.singlefacts[cls] |= {func} return func return _ def multiregister(self, *classes): def _(func): for cls in classes: self.multifacts[cls] |= {func} return func return _ def __getitem__(self, key): ret1 = self.singlefacts[key] for k in self.singlefacts: if issubclass(key, k): ret1 |= self.singlefacts[k] ret2 = self.multifacts[key] for k in self.multifacts: if issubclass(key, k): ret2 |= self.multifacts[k] return ret1, ret2 def __call__(self, expr): ret = set() handlers1, handlers2 = self[type(expr)] ret.update(h(expr) for h in handlers1) for h in handlers2: ret.update(h(expr)) return ret class_fact_registry = ClassFactRegistry() ### Class fact registration ### x = Symbol('x') ## Abs ## @class_fact_registry.multiregister(Abs) def _(expr): arg = expr.args[0] return [Q.nonnegative(expr), Equivalent(~Q.zero(arg), ~Q.zero(expr)), Q.even(arg) >> Q.even(expr), Q.odd(arg) >> Q.odd(expr), Q.integer(arg) >> Q.integer(expr), ] ### Add ## @class_fact_registry.multiregister(Add) def _(expr): return [allargs(x, Q.positive(x), expr) >> Q.positive(expr), allargs(x, Q.negative(x), expr) >> Q.negative(expr), allargs(x, Q.real(x), expr) >> Q.real(expr), allargs(x, Q.rational(x), expr) >> Q.rational(expr), allargs(x, Q.integer(x), expr) >> Q.integer(expr), exactlyonearg(x, ~Q.integer(x), expr) >> ~Q.integer(expr), ] @class_fact_registry.register(Add) def _(expr): allargs_real = allargs(x, Q.real(x), expr) onearg_irrational = exactlyonearg(x, Q.irrational(x), expr) return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr))) ### Mul ### @class_fact_registry.multiregister(Mul) def _(expr): return [Equivalent(Q.zero(expr), anyarg(x, Q.zero(x), expr)), allargs(x, Q.positive(x), expr) >> Q.positive(expr), allargs(x, Q.real(x), expr) >> Q.real(expr), allargs(x, Q.rational(x), expr) >> Q.rational(expr), allargs(x, Q.integer(x), expr) >> Q.integer(expr), exactlyonearg(x, ~Q.rational(x), expr) >> ~Q.integer(expr), allargs(x, Q.commutative(x), expr) >> Q.commutative(expr), ] @class_fact_registry.register(Mul) def _(expr): # Implicitly assumes Mul has more than one arg # Would be allargs(x, Q.prime(x) | Q.composite(x)) except 1 is composite # More advanced prime assumptions will require inequalities, as 1 provides # a corner case. allargs_prime = allargs(x, Q.prime(x), expr) return Implies(allargs_prime, ~Q.prime(expr)) @class_fact_registry.register(Mul) def _(expr): # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented) allargs_imag_or_real = allargs(x, Q.imaginary(x) | Q.real(x), expr) onearg_imaginary = exactlyonearg(x, Q.imaginary(x), expr) return Implies(allargs_imag_or_real, Implies(onearg_imaginary, Q.imaginary(expr))) @class_fact_registry.register(Mul) def _(expr): allargs_real = allargs(x, Q.real(x), expr) onearg_irrational = exactlyonearg(x, Q.irrational(x), expr) return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr))) @class_fact_registry.register(Mul) def _(expr): # Including the integer qualification means we don't need to add any facts # for odd, since the assumptions already know that every integer is # exactly one of even or odd. allargs_integer = allargs(x, Q.integer(x), expr) anyarg_even = anyarg(x, Q.even(x), expr) return Implies(allargs_integer, Equivalent(anyarg_even, Q.even(expr))) ### MatMul ### @class_fact_registry.register(MatMul) def _(expr): allargs_square = allargs(x, Q.square(x), expr) allargs_invertible = allargs(x, Q.invertible(x), expr) return Implies(allargs_square, Equivalent(Q.invertible(expr), allargs_invertible)) ### Pow ### @class_fact_registry.multiregister(Pow) def _(expr): base, exp = expr.base, expr.exp return [ (Q.real(base) & Q.even(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr), (Q.nonnegative(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr), (Q.nonpositive(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonpositive(expr), Equivalent(Q.zero(expr), Q.zero(base) & Q.positive(exp)) ] ### Numbers ### _old_assump_getters = { Q.positive: lambda o: o.is_positive, Q.zero: lambda o: o.is_zero, Q.negative: lambda o: o.is_negative, Q.rational: lambda o: o.is_rational, Q.irrational: lambda o: o.is_irrational, Q.even: lambda o: o.is_even, Q.odd: lambda o: o.is_odd, Q.imaginary: lambda o: o.is_imaginary, Q.prime: lambda o: o.is_prime, Q.composite: lambda o: o.is_composite, } @class_fact_registry.multiregister(Number, NumberSymbol, ImaginaryUnit) def _(expr): ret = [] for p, getter in _old_assump_getters.items(): pred = p(expr) prop = getter(expr) if prop is not None: ret.append(Equivalent(pred, prop)) return ret