from itertools import product from typing import Tuple as tTuple from sympy.core.add import Add from sympy.core.cache import cacheit from sympy.core.expr import Expr from sympy.core.function import (Function, ArgumentIndexError, expand_log, expand_mul, FunctionClass, PoleError, expand_multinomial, expand_complex) from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or from sympy.core.mul import Mul from sympy.core.numbers import Integer, Rational, pi, I from sympy.core.parameters import global_parameters from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import arg, unpolarify, im, re, Abs from sympy.functions.elementary.miscellaneous import sqrt from sympy.ntheory import multiplicity, perfect_power from sympy.ntheory.factor_ import factorint # NOTE IMPORTANT # The series expansion code in this file is an important part of the gruntz # algorithm for determining limits. _eval_nseries has to return a generalized # power series with coefficients in C(log(x), log). # In more detail, the result of _eval_nseries(self, x, n) must be # c_0*x**e_0 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i involve only # numbers, the function log, and log(x). [This also means it must not contain # log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and # p.is_positive.] class ExpBase(Function): unbranched = True _singularities = (S.ComplexInfinity,) @property def kind(self): return self.exp.kind def inverse(self, argindex=1): """ Returns the inverse function of ``exp(x)``. """ return log def as_numer_denom(self): """ Returns this with a positive exponent as a 2-tuple (a fraction). Examples ======== >>> from sympy import exp >>> from sympy.abc import x >>> exp(-x).as_numer_denom() (1, exp(x)) >>> exp(x).as_numer_denom() (exp(x), 1) """ # this should be the same as Pow.as_numer_denom wrt # exponent handling if not self.is_commutative: return self, S.One exp = self.exp neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = exp.could_extract_minus_sign() if neg_exp: return S.One, self.func(-exp) return self, S.One @property def exp(self): """ Returns the exponent of the function. """ return self.args[0] def as_base_exp(self): """ Returns the 2-tuple (base, exponent). """ return self.func(1), Mul(*self.args) def _eval_adjoint(self): return self.func(self.exp.adjoint()) def _eval_conjugate(self): return self.func(self.exp.conjugate()) def _eval_transpose(self): return self.func(self.exp.transpose()) def _eval_is_finite(self): arg = self.exp if arg.is_infinite: if arg.is_extended_negative: return True if arg.is_extended_positive: return False if arg.is_finite: return True def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: z = s.exp.is_zero if z: return True elif s.exp.is_rational and fuzzy_not(z): return False else: return s.is_rational def _eval_is_zero(self): return self.exp is S.NegativeInfinity def _eval_power(self, other): """exp(arg)**e -> exp(arg*e) if assumptions allow it. """ b, e = self.as_base_exp() return Pow._eval_power(Pow(b, e, evaluate=False), other) def _eval_expand_power_exp(self, **hints): from sympy.concrete.products import Product from sympy.concrete.summations import Sum arg = self.args[0] if arg.is_Add and arg.is_commutative: return Mul.fromiter(self.func(x) for x in arg.args) elif isinstance(arg, Sum) and arg.is_commutative: return Product(self.func(arg.function), *arg.limits) return self.func(arg) class exp_polar(ExpBase): r""" Represent a *polar number* (see g-function Sphinx documentation). Explanation =========== ``exp_polar`` represents the function `Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number `z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of the main functions to construct polar numbers. Examples ======== >>> from sympy import exp_polar, pi, I, exp The main difference is that polar numbers do not "wrap around" at `2 \pi`: >>> exp(2*pi*I) 1 >>> exp_polar(2*pi*I) exp_polar(2*I*pi) apart from that they behave mostly like classical complex numbers: >>> exp_polar(2)*exp_polar(3) exp_polar(5) See Also ======== sympy.simplify.powsimp.powsimp polar_lift periodic_argument principal_branch """ is_polar = True is_comparable = False # cannot be evalf'd def _eval_Abs(self): # Abs is never a polar number return exp(re(self.args[0])) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ i = im(self.args[0]) try: bad = (i <= -pi or i > pi) except TypeError: bad = True if bad: return self # cannot evalf for this argument res = exp(self.args[0])._eval_evalf(prec) if i > 0 and im(res) < 0: # i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi return re(res) return res def _eval_power(self, other): return self.func(self.args[0]*other) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def as_base_exp(self): # XXX exp_polar(0) is special! if self.args[0] == 0: return self, S.One return ExpBase.as_base_exp(self) class ExpMeta(FunctionClass): def __instancecheck__(cls, instance): if exp in instance.__class__.__mro__: return True return isinstance(instance, Pow) and instance.base is S.Exp1 class exp(ExpBase, metaclass=ExpMeta): """ The exponential function, :math:`e^x`. Examples ======== >>> from sympy import exp, I, pi >>> from sympy.abc import x >>> exp(x) exp(x) >>> exp(x).diff(x) exp(x) >>> exp(I*pi) -1 Parameters ========== arg : Expr See Also ======== log """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return self else: raise ArgumentIndexError(self, argindex) def _eval_refine(self, assumptions): from sympy.assumptions import ask, Q arg = self.args[0] if arg.is_Mul: Ioo = I*S.Infinity if arg in [Ioo, -Ioo]: return S.NaN coeff = arg.as_coefficient(pi*I) if coeff: if ask(Q.integer(2*coeff)): if ask(Q.even(coeff)): return S.One elif ask(Q.odd(coeff)): return S.NegativeOne elif ask(Q.even(coeff + S.Half)): return -I elif ask(Q.odd(coeff + S.Half)): return I @classmethod def eval(cls, arg): from sympy.calculus import AccumBounds from sympy.matrices.matrixbase import MatrixBase from sympy.sets.setexpr import SetExpr from sympy.simplify.simplify import logcombine if isinstance(arg, MatrixBase): return arg.exp() elif global_parameters.exp_is_pow: return Pow(S.Exp1, arg) elif arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.One elif arg is S.One: return S.Exp1 elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg is S.ComplexInfinity: return S.NaN elif isinstance(arg, log): return arg.args[0] elif isinstance(arg, AccumBounds): return AccumBounds(exp(arg.min), exp(arg.max)) elif isinstance(arg, SetExpr): return arg._eval_func(cls) elif arg.is_Mul: coeff = arg.as_coefficient(pi*I) if coeff: if (2*coeff).is_integer: if coeff.is_even: return S.One elif coeff.is_odd: return S.NegativeOne elif (coeff + S.Half).is_even: return -I elif (coeff + S.Half).is_odd: return I elif coeff.is_Rational: ncoeff = coeff % 2 # restrict to [0, 2pi) if ncoeff > 1: # restrict to (-pi, pi] ncoeff -= 2 if ncoeff != coeff: return cls(ncoeff*pi*I) # Warning: code in risch.py will be very sensitive to changes # in this (see DifferentialExtension). # look for a single log factor coeff, terms = arg.as_coeff_Mul() # but it can't be multiplied by oo if coeff in [S.NegativeInfinity, S.Infinity]: if terms.is_number: if coeff is S.NegativeInfinity: terms = -terms if re(terms).is_zero and terms is not S.Zero: return S.NaN if re(terms).is_positive and im(terms) is not S.Zero: return S.ComplexInfinity if re(terms).is_negative: return S.Zero return None coeffs, log_term = [coeff], None for term in Mul.make_args(terms): term_ = logcombine(term) if isinstance(term_, log): if log_term is None: log_term = term_.args[0] else: return None elif term.is_comparable: coeffs.append(term) else: return None return log_term**Mul(*coeffs) if log_term else None elif arg.is_Add: out = [] add = [] argchanged = False for a in arg.args: if a is S.One: add.append(a) continue newa = cls(a) if isinstance(newa, cls): if newa.args[0] != a: add.append(newa.args[0]) argchanged = True else: add.append(a) else: out.append(newa) if out or argchanged: return Mul(*out)*cls(Add(*add), evaluate=False) if arg.is_zero: return S.One @property def base(self): """ Returns the base of the exponential function. """ return S.Exp1 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Calculates the next term in the Taylor series expansion. """ if n < 0: return S.Zero if n == 0: return S.One x = sympify(x) if previous_terms: p = previous_terms[-1] if p is not None: return p * x / n return x**n/factorial(n) def as_real_imag(self, deep=True, **hints): """ Returns this function as a 2-tuple representing a complex number. Examples ======== >>> from sympy import exp, I >>> from sympy.abc import x >>> exp(x).as_real_imag() (exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x))) >>> exp(1).as_real_imag() (E, 0) >>> exp(I).as_real_imag() (cos(1), sin(1)) >>> exp(1+I).as_real_imag() (E*cos(1), E*sin(1)) See Also ======== sympy.functions.elementary.complexes.re sympy.functions.elementary.complexes.im """ from sympy.functions.elementary.trigonometric import cos, sin re, im = self.args[0].as_real_imag() if deep: re = re.expand(deep, **hints) im = im.expand(deep, **hints) cos, sin = cos(im), sin(im) return (exp(re)*cos, exp(re)*sin) def _eval_subs(self, old, new): # keep processing of power-like args centralized in Pow if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2) old = exp(old.exp*log(old.base)) elif old is S.Exp1 and new.is_Function: old = exp if isinstance(old, exp) or old is S.Exp1: f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if ( a.is_Pow or isinstance(a, exp)) else a return Pow._eval_subs(f(self), f(old), new) if old is exp and not new.is_Function: return new**self.exp._subs(old, new) return Function._eval_subs(self, old, new) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True elif self.args[0].is_imaginary: arg2 = -S(2) * I * self.args[0] / pi return arg2.is_even def _eval_is_complex(self): def complex_extended_negative(arg): yield arg.is_complex yield arg.is_extended_negative return fuzzy_or(complex_extended_negative(self.args[0])) def _eval_is_algebraic(self): if (self.exp / pi / I).is_rational: return True if fuzzy_not(self.exp.is_zero): if self.exp.is_algebraic: return False elif (self.exp / pi).is_rational: return False def _eval_is_extended_positive(self): if self.exp.is_extended_real: return self.args[0] is not S.NegativeInfinity elif self.exp.is_imaginary: arg2 = -I * self.args[0] / pi return arg2.is_even def _eval_nseries(self, x, n, logx, cdir=0): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.integers import ceiling from sympy.series.limits import limit from sympy.series.order import Order from sympy.simplify.powsimp import powsimp arg = self.exp arg_series = arg._eval_nseries(x, n=n, logx=logx) if arg_series.is_Order: return 1 + arg_series arg0 = limit(arg_series.removeO(), x, 0) if arg0 is S.NegativeInfinity: return Order(x**n, x) if arg0 is S.Infinity: return self if arg0.is_infinite: raise PoleError("Cannot expand %s around 0" % (self)) # checking for indecisiveness/ sign terms in arg0 if any(isinstance(arg, sign) for arg in arg0.args): return self t = Dummy("t") nterms = n try: cf = Order(arg.as_leading_term(x, logx=logx), x).getn() except (NotImplementedError, PoleError): cf = 0 if cf and cf > 0: nterms = ceiling(n/cf) exp_series = exp(t)._taylor(t, nterms) r = exp(arg0)*exp_series.subs(t, arg_series - arg0) rep = {logx: log(x)} if logx is not None else {} if r.subs(rep) == self: return r if cf and cf > 1: r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n) else: r += Order((arg_series - arg0)**n, x) r = r.expand() r = powsimp(r, deep=True, combine='exp') # powsimp may introduce unexpanded (-1)**Rational; see PR #17201 simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6] w = Wild('w', properties=[simplerat]) r = r.replace(S.NegativeOne**w, expand_complex(S.NegativeOne**w)) return r def _taylor(self, x, n): l = [] g = None for i in range(n): g = self.taylor_term(i, self.args[0], g) g = g.nseries(x, n=n) l.append(g.removeO()) return Add(*l) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.util import AccumBounds arg = self.args[0].cancel().as_leading_term(x, logx=logx) arg0 = arg.subs(x, 0) if arg is S.NaN: return S.NaN if isinstance(arg0, AccumBounds): # This check addresses a corner case involving AccumBounds. # if isinstance(arg, AccumBounds) is True, then arg0 can either be 0, # AccumBounds(-oo, 0) or AccumBounds(-oo, oo). # Check out function: test_issue_18473() in test_exponential.py and # test_limits.py for more information. if re(cdir) < S.Zero: return exp(-arg0) return exp(arg0) if arg0 is S.NaN: arg0 = arg.limit(x, 0) if arg0.is_infinite is False: return exp(arg0) raise PoleError("Cannot expand %s around 0" % (self)) def _eval_rewrite_as_sin(self, arg, **kwargs): from sympy.functions.elementary.trigonometric import sin return sin(I*arg + pi/2) - I*sin(I*arg) def _eval_rewrite_as_cos(self, arg, **kwargs): from sympy.functions.elementary.trigonometric import cos return cos(I*arg) + I*cos(I*arg + pi/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): from sympy.functions.elementary.hyperbolic import tanh return (1 + tanh(arg/2))/(1 - tanh(arg/2)) def _eval_rewrite_as_sqrt(self, arg, **kwargs): from sympy.functions.elementary.trigonometric import sin, cos if arg.is_Mul: coeff = arg.coeff(pi*I) if coeff and coeff.is_number: cosine, sine = cos(pi*coeff), sin(pi*coeff) if not isinstance(cosine, cos) and not isinstance (sine, sin): return cosine + I*sine def _eval_rewrite_as_Pow(self, arg, **kwargs): if arg.is_Mul: logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1] if logs: return Pow(logs[0].args[0], arg.coeff(logs[0])) def match_real_imag(expr): r""" Try to match expr with $a + Ib$ for real $a$ and $b$. ``match_real_imag`` returns a tuple containing the real and imaginary parts of expr or ``(None, None)`` if direct matching is not possible. Contrary to :func:`~.re()`, :func:`~.im()``, and ``as_real_imag()``, this helper will not force things by returning expressions themselves containing ``re()`` or ``im()`` and it does not expand its argument either. """ r_, i_ = expr.as_independent(I, as_Add=True) if i_ == 0 and r_.is_real: return (r_, i_) i_ = i_.as_coefficient(I) if i_ and i_.is_real and r_.is_real: return (r_, i_) else: return (None, None) # simpler to check for than None class log(Function): r""" The natural logarithm function `\ln(x)` or `\log(x)`. Explanation =========== Logarithms are taken with the natural base, `e`. To get a logarithm of a different base ``b``, use ``log(x, b)``, which is essentially short-hand for ``log(x)/log(b)``. ``log`` represents the principal branch of the natural logarithm. As such it has a branch cut along the negative real axis and returns values having a complex argument in `(-\pi, \pi]`. Examples ======== >>> from sympy import log, sqrt, S, I >>> log(8, 2) 3 >>> log(S(8)/3, 2) -log(3)/log(2) + 3 >>> log(-1 + I*sqrt(3)) log(2) + 2*I*pi/3 See Also ======== exp """ args: tTuple[Expr] _singularities = (S.Zero, S.ComplexInfinity) def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if argindex == 1: return 1/self.args[0] else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): r""" Returns `e^x`, the inverse function of `\log(x)`. """ return exp @classmethod def eval(cls, arg, base=None): from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr arg = sympify(arg) if base is not None: base = sympify(base) if base == 1: if arg == 1: return S.NaN else: return S.ComplexInfinity try: # handle extraction of powers of the base now # or else expand_log in Mul would have to handle this n = multiplicity(base, arg) if n: return n + log(arg / base**n) / log(base) else: return log(arg)/log(base) except ValueError: pass if base is not S.Exp1: return cls(arg)/cls(base) else: return cls(arg) if arg.is_Number: if arg.is_zero: return S.ComplexInfinity elif arg is S.One: return S.Zero elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg is S.NaN: return S.NaN elif arg.is_Rational and arg.p == 1: return -cls(arg.q) if arg.is_Pow and arg.base is S.Exp1 and arg.exp.is_extended_real: return arg.exp if isinstance(arg, exp) and arg.exp.is_extended_real: return arg.exp elif isinstance(arg, exp) and arg.exp.is_number: r_, i_ = match_real_imag(arg.exp) if i_ and i_.is_comparable: i_ %= 2*pi if i_ > pi: i_ -= 2*pi return r_ + expand_mul(i_ * I, deep=False) elif isinstance(arg, exp_polar): return unpolarify(arg.exp) elif isinstance(arg, AccumBounds): if arg.min.is_positive: return AccumBounds(log(arg.min), log(arg.max)) elif arg.min.is_zero: return AccumBounds(S.NegativeInfinity, log(arg.max)) else: return S.NaN elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.is_number: if arg.is_negative: return pi * I + cls(-arg) elif arg is S.ComplexInfinity: return S.ComplexInfinity elif arg is S.Exp1: return S.One if arg.is_zero: return S.ComplexInfinity # don't autoexpand Pow or Mul (see the issue 3351): if not arg.is_Add: coeff = arg.as_coefficient(I) if coeff is not None: if coeff is S.Infinity: return S.Infinity elif coeff is S.NegativeInfinity: return S.Infinity elif coeff.is_Rational: if coeff.is_nonnegative: return pi * I * S.Half + cls(coeff) else: return -pi * I * S.Half + cls(-coeff) if arg.is_number and arg.is_algebraic: # Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real. coeff, arg_ = arg.as_independent(I, as_Add=False) if coeff.is_negative: coeff *= -1 arg_ *= -1 arg_ = expand_mul(arg_, deep=False) r_, i_ = arg_.as_independent(I, as_Add=True) i_ = i_.as_coefficient(I) if coeff.is_real and i_ and i_.is_real and r_.is_real: if r_.is_zero: if i_.is_positive: return pi * I * S.Half + cls(coeff * i_) elif i_.is_negative: return -pi * I * S.Half + cls(coeff * -i_) else: from sympy.simplify import ratsimp # Check for arguments involving rational multiples of pi t = (i_/r_).cancel() t1 = (-t).cancel() atan_table = _log_atan_table() if t in atan_table: modulus = ratsimp(coeff * Abs(arg_)) if r_.is_positive: return cls(modulus) + I * atan_table[t] else: return cls(modulus) + I * (atan_table[t] - pi) elif t1 in atan_table: modulus = ratsimp(coeff * Abs(arg_)) if r_.is_positive: return cls(modulus) + I * (-atan_table[t1]) else: return cls(modulus) + I * (pi - atan_table[t1]) def as_base_exp(self): """ Returns this function in the form (base, exponent). """ return self, S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # of log(1+x) r""" Returns the next term in the Taylor series expansion of `\log(1+x)`. """ from sympy.simplify.powsimp import powsimp if n < 0: return S.Zero x = sympify(x) if n == 0: return x if previous_terms: p = previous_terms[-1] if p is not None: return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp') return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1) def _eval_expand_log(self, deep=True, **hints): from sympy.concrete import Sum, Product force = hints.get('force', False) factor = hints.get('factor', False) if (len(self.args) == 2): return expand_log(self.func(*self.args), deep=deep, force=force) arg = self.args[0] if arg.is_Integer: # remove perfect powers p = perfect_power(arg) logarg = None coeff = 1 if p is not False: arg, coeff = p logarg = self.func(arg) # expand as product of its prime factors if factor=True if factor: p = factorint(arg) if arg not in p.keys(): logarg = sum(n*log(val) for val, n in p.items()) if logarg is not None: return coeff*logarg elif arg.is_Rational: return log(arg.p) - log(arg.q) elif arg.is_Mul: expr = [] nonpos = [] for x in arg.args: if force or x.is_positive or x.is_polar: a = self.func(x) if isinstance(a, log): expr.append(self.func(x)._eval_expand_log(**hints)) else: expr.append(a) elif x.is_negative: a = self.func(-x) expr.append(a) nonpos.append(S.NegativeOne) else: nonpos.append(x) return Add(*expr) + log(Mul(*nonpos)) elif arg.is_Pow or isinstance(arg, exp): if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1) .is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar: b = arg.base e = arg.exp a = self.func(b) if isinstance(a, log): return unpolarify(e) * a._eval_expand_log(**hints) else: return unpolarify(e) * a elif isinstance(arg, Product): if force or arg.function.is_positive: return Sum(log(arg.function), *arg.limits) return self.func(arg) def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import expand_log, simplify, inversecombine if len(self.args) == 2: # it's unevaluated return simplify(self.func(*self.args), **kwargs) expr = self.func(simplify(self.args[0], **kwargs)) if kwargs['inverse']: expr = inversecombine(expr) expr = expand_log(expr, deep=True) return min([expr, self], key=kwargs['measure']) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. Examples ======== >>> from sympy import I, log >>> from sympy.abc import x >>> log(x).as_real_imag() (log(Abs(x)), arg(x)) >>> log(I).as_real_imag() (0, pi/2) >>> log(1 + I).as_real_imag() (log(sqrt(2)), pi/4) >>> log(I*x).as_real_imag() (log(Abs(x)), arg(I*x)) """ sarg = self.args[0] if deep: sarg = self.args[0].expand(deep, **hints) sarg_abs = Abs(sarg) if sarg_abs == sarg: return self, S.Zero sarg_arg = arg(sarg) if hints.get('log', False): # Expand the log hints['complex'] = False return (log(sarg_abs).expand(deep, **hints), sarg_arg) else: return log(sarg_abs), sarg_arg def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True elif fuzzy_not((self.args[0] - 1).is_zero): if self.args[0].is_algebraic: return False else: return s.is_algebraic def _eval_is_extended_real(self): return self.args[0].is_extended_positive def _eval_is_complex(self): z = self.args[0] return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)]) def _eval_is_finite(self): arg = self.args[0] if arg.is_zero: return False return arg.is_finite def _eval_is_extended_positive(self): return (self.args[0] - 1).is_extended_positive def _eval_is_zero(self): return (self.args[0] - 1).is_zero def _eval_is_extended_nonnegative(self): return (self.args[0] - 1).is_extended_nonnegative def _eval_nseries(self, x, n, logx, cdir=0): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy.series.order import Order from sympy.simplify.simplify import logcombine from sympy.core.symbol import Dummy if self.args[0] == x: return log(x) if logx is None else logx arg = self.args[0] t = Dummy('t', positive=True) if cdir == 0: cdir = 1 z = arg.subs(x, cdir*t) k, l = Wild("k"), Wild("l") r = z.match(k*t**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(t) and not k.has(t): r = l*log(x) if logx is None else l*logx r += log(k) - l*log(cdir) # XXX true regardless of assumptions? return r def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp # TODO new and probably slow try: a, b = z.leadterm(t, logx=logx, cdir=1) except (ValueError, NotImplementedError, PoleError): s = z._eval_nseries(t, n=n, logx=logx, cdir=1) while s.is_Order: n += 1 s = z._eval_nseries(t, n=n, logx=logx, cdir=1) try: a, b = s.removeO().leadterm(t, cdir=1) except ValueError: a, b = s.removeO().as_leading_term(t, cdir=1), S.Zero p = (z/(a*t**b) - 1)._eval_nseries(t, n=n, logx=logx, cdir=1) if p.has(exp): p = logcombine(p) if isinstance(p, Order): n = p.getn() _, d = coeff_exp(p, t) logx = log(x) if logx is None else logx if not d.is_positive: res = log(a) - b*log(cdir) + b*logx _res = res logflags = {"deep": True, "log": True, "mul": False, "power_exp": False, "power_base": False, "multinomial": False, "basic": False, "force": True, "factor": False} expr = self.expand(**logflags) if (not a.could_extract_minus_sign() and logx.could_extract_minus_sign()): _res = _res.subs(-logx, -log(x)).expand(**logflags) else: _res = _res.subs(logx, log(x)).expand(**logflags) if _res == expr: return res return res + Order(x**n, x) def mul(d1, d2): res = {} for e1, e2 in product(d1, d2): ex = e1 + e2 if ex < n: res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2] return res pterms = {} for term in Add.make_args(p.removeO()): co1, e1 = coeff_exp(term, t) pterms[e1] = pterms.get(e1, S.Zero) + co1 k = S.One terms = {} pk = pterms while k*d < n: coeff = -S.NegativeOne**k/k for ex in pk: _ = terms.get(ex, S.Zero) + coeff*pk[ex] terms[ex] = _.nsimplify() pk = mul(pk, pterms) k += S.One res = log(a) - b*log(cdir) + b*logx for ex in terms: res += terms[ex]*t**(ex) if a.is_negative and im(z) != 0: from sympy.functions.special.delta_functions import Heaviside for i, term in enumerate(z.lseries(t)): if not term.is_real or i == 5: break if i < 5: coeff, _ = term.as_coeff_exponent(t) res += -2*I*pi*Heaviside(-im(coeff), 0) res = res.subs(t, x/cdir) return res + Order(x**n, x) def _eval_as_leading_term(self, x, logx=None, cdir=0): # NOTE # Refer https://github.com/sympy/sympy/pull/23592 for more information # on each of the following steps involved in this method. arg0 = self.args[0].together() # STEP 1 t = Dummy('t', positive=True) if cdir == 0: cdir = 1 z = arg0.subs(x, cdir*t) # STEP 2 try: c, e = z.leadterm(t, logx=logx, cdir=1) except ValueError: arg = arg0.as_leading_term(x, logx=logx, cdir=cdir) return log(arg) if c.has(t): c = c.subs(t, x/cdir) if e != 0: raise PoleError("Cannot expand %s around 0" % (self)) return log(c) # STEP 3 if c == S.One and e == S.Zero: return (arg0 - S.One).as_leading_term(x, logx=logx) # STEP 4 res = log(c) - e*log(cdir) logx = log(x) if logx is None else logx res += e*logx # STEP 5 if c.is_negative and im(z) != 0: from sympy.functions.special.delta_functions import Heaviside for i, term in enumerate(z.lseries(t)): if not term.is_real or i == 5: break if i < 5: coeff, _ = term.as_coeff_exponent(t) res += -2*I*pi*Heaviside(-im(coeff), 0) return res class LambertW(Function): r""" The Lambert W function $W(z)$ is defined as the inverse function of $w \exp(w)$ [1]_. Explanation =========== In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$ for any complex number $z$. The Lambert W function is a multivalued function with infinitely many branches $W_k(z)$, indexed by $k \in \mathbb{Z}$. Each branch gives a different solution $w$ of the equation $z = w \exp(w)$. The Lambert W function has two partially real branches: the principal branch ($k = 0$) is real for real $z > -1/e$, and the $k = -1$ branch is real for $-1/e < z < 0$. All branches except $k = 0$ have a logarithmic singularity at $z = 0$. Examples ======== >>> from sympy import LambertW >>> LambertW(1.2) 0.635564016364870 >>> LambertW(1.2, -1).n() -1.34747534407696 - 4.41624341514535*I >>> LambertW(-1).is_real False References ========== .. [1] https://en.wikipedia.org/wiki/Lambert_W_function """ _singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity) @classmethod def eval(cls, x, k=None): if k == S.Zero: return cls(x) elif k is None: k = S.Zero if k.is_zero: if x.is_zero: return S.Zero if x is S.Exp1: return S.One if x == -1/S.Exp1: return S.NegativeOne if x == -log(2)/2: return -log(2) if x == 2*log(2): return log(2) if x == -pi/2: return I*pi/2 if x == exp(1 + S.Exp1): return S.Exp1 if x is S.Infinity: return S.Infinity if fuzzy_not(k.is_zero): if x.is_zero: return S.NegativeInfinity if k is S.NegativeOne: if x == -pi/2: return -I*pi/2 elif x == -1/S.Exp1: return S.NegativeOne elif x == -2*exp(-2): return -Integer(2) def fdiff(self, argindex=1): """ Return the first derivative of this function. """ x = self.args[0] if len(self.args) == 1: if argindex == 1: return LambertW(x)/(x*(1 + LambertW(x))) else: k = self.args[1] if argindex == 1: return LambertW(x, k)/(x*(1 + LambertW(x, k))) raise ArgumentIndexError(self, argindex) def _eval_is_extended_real(self): x = self.args[0] if len(self.args) == 1: k = S.Zero else: k = self.args[1] if k.is_zero: if (x + 1/S.Exp1).is_positive: return True elif (x + 1/S.Exp1).is_nonpositive: return False elif (k + 1).is_zero: if x.is_negative and (x + 1/S.Exp1).is_positive: return True elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative: return False elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero): if x.is_extended_real: return False def _eval_is_finite(self): return self.args[0].is_finite def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False else: return s.is_algebraic def _eval_as_leading_term(self, x, logx=None, cdir=0): if len(self.args) == 1: arg = self.args[0] arg0 = arg.subs(x, 0).cancel() if not arg0.is_zero: return self.func(arg0) return arg.as_leading_term(x) def _eval_nseries(self, x, n, logx, cdir=0): if len(self.args) == 1: from sympy.functions.elementary.integers import ceiling from sympy.series.order import Order arg = self.args[0].nseries(x, n=n, logx=logx) lt = arg.as_leading_term(x, logx=logx) lte = 1 if lt.is_Pow: lte = lt.exp if ceiling(n/lte) >= 1: s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/ factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))]) s = expand_multinomial(s) else: s = S.Zero return s + Order(x**n, x) return super()._eval_nseries(x, n, logx) def _eval_is_zero(self): x = self.args[0] if len(self.args) == 1: return x.is_zero else: return fuzzy_and([x.is_zero, self.args[1].is_zero]) @cacheit def _log_atan_table(): return { # first quadrant only sqrt(3): pi / 3, 1: pi / 4, sqrt(5 - 2 * sqrt(5)): pi / 5, sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)): pi / 5, sqrt(5 + 2 * sqrt(5)): pi * Rational(2, 5), sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)): pi * Rational(2, 5), sqrt(3) / 3: pi / 6, sqrt(2) - 1: pi / 8, sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2): pi / 8, sqrt(2) + 1: pi * Rational(3, 8), sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)): pi * Rational(3, 8), sqrt(1 - 2 * sqrt(5) / 5): pi / 10, (-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)): pi / 10, sqrt(1 + 2 * sqrt(5) / 5): pi * Rational(3, 10), (sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))): pi * Rational(3, 10), 2 - sqrt(3): pi / 12, (-1 + sqrt(3)) / (1 + sqrt(3)): pi / 12, 2 + sqrt(3): pi * Rational(5, 12), (1 + sqrt(3)) / (-1 + sqrt(3)): pi * Rational(5, 12) }