from typing import Tuple as tTuple from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core import Add, S from sympy.core.evalf import get_integer_part, PrecisionExhausted from sympy.core.function import Function from sympy.core.logic import fuzzy_or from sympy.core.numbers import Integer, int_valued from sympy.core.relational import Gt, Lt, Ge, Le, Relational, is_eq from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import im, re from sympy.multipledispatch import dispatch ############################################################################### ######################### FLOOR and CEILING FUNCTIONS ######################### ############################################################################### class RoundFunction(Function): """Abstract base class for rounding functions.""" args: tTuple[Expr] @classmethod def eval(cls, arg): v = cls._eval_number(arg) if v is not None: return v if arg.is_integer or arg.is_finite is False: return arg if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: i = im(arg) if not i.has(S.ImaginaryUnit): return cls(i)*S.ImaginaryUnit return cls(arg, evaluate=False) # Integral, numerical, symbolic part ipart = npart = spart = S.Zero # Extract integral (or complex integral) terms intof = lambda x: int(x) if int_valued(x) else ( x if x.is_integer else None) for t in Add.make_args(arg): if t.is_imaginary and (i := intof(im(t))) is not None: ipart += i*S.ImaginaryUnit elif (i := intof(t)) is not None: ipart += i elif t.is_number: npart += t else: spart += t if not (npart or spart): return ipart # Evaluate npart numerically if independent of spart if npart and ( not spart or npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or npart.is_imaginary and spart.is_real): try: r, i = get_integer_part( npart, cls._dir, {}, return_ints=True) ipart += Integer(r) + Integer(i)*S.ImaginaryUnit npart = S.Zero except (PrecisionExhausted, NotImplementedError): pass spart += npart if not spart: return ipart elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real: return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit elif isinstance(spart, (floor, ceiling)): return ipart + spart else: return ipart + cls(spart, evaluate=False) @classmethod def _eval_number(cls, arg): raise NotImplementedError() def _eval_is_finite(self): return self.args[0].is_finite def _eval_is_real(self): return self.args[0].is_real def _eval_is_integer(self): return self.args[0].is_real class floor(RoundFunction): """ Floor is a univariate function which returns the largest integer value not greater than its argument. This implementation generalizes floor to complex numbers by taking the floor of the real and imaginary parts separately. Examples ======== >>> from sympy import floor, E, I, S, Float, Rational >>> floor(17) 17 >>> floor(Rational(23, 10)) 2 >>> floor(2*E) 5 >>> floor(-Float(0.567)) -1 >>> floor(-I/2) -I >>> floor(S(5)/2 + 5*I/2) 2 + 2*I See Also ======== sympy.functions.elementary.integers.ceiling References ========== .. [1] "Concrete mathematics" by Graham, pp. 87 .. [2] https://mathworld.wolfram.com/FloorFunction.html """ _dir = -1 @classmethod def _eval_number(cls, arg): if arg.is_Number: return arg.floor() elif any(isinstance(i, j) for i in (arg, -arg) for j in (floor, ceiling)): return arg if arg.is_NumberSymbol: return arg.approximation_interval(Integer)[0] def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds arg = self.args[0] arg0 = arg.subs(x, 0) r = self.subs(x, 0) if arg0 is S.NaN or isinstance(arg0, AccumBounds): arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') r = floor(arg0) if arg0.is_finite: if arg0 == r: ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1) if ndir.is_negative: return r - 1 elif ndir.is_positive: return r else: raise NotImplementedError("Not sure of sign of %s" % ndir) else: return r return arg.as_leading_term(x, logx=logx, cdir=cdir) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] arg0 = arg.subs(x, 0) r = self.subs(x, 0) if arg0 is S.NaN: arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') r = floor(arg0) if arg0.is_infinite: from sympy.calculus.accumulationbounds import AccumBounds from sympy.series.order import Order s = arg._eval_nseries(x, n, logx, cdir) o = Order(1, (x, 0)) if n <= 0 else AccumBounds(-1, 0) return s + o if arg0 == r: ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1) if ndir.is_negative: return r - 1 elif ndir.is_positive: return r else: raise NotImplementedError("Not sure of sign of %s" % ndir) else: return r def _eval_is_negative(self): return self.args[0].is_negative def _eval_is_nonnegative(self): return self.args[0].is_nonnegative def _eval_rewrite_as_ceiling(self, arg, **kwargs): return -ceiling(-arg) def _eval_rewrite_as_frac(self, arg, **kwargs): return arg - frac(arg) def __le__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] < other + 1 if other.is_number and other.is_real: return self.args[0] < ceiling(other) if self.args[0] == other and other.is_real: return S.true if other is S.Infinity and self.is_finite: return S.true return Le(self, other, evaluate=False) def __ge__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] >= other if other.is_number and other.is_real: return self.args[0] >= ceiling(other) if self.args[0] == other and other.is_real: return S.false if other is S.NegativeInfinity and self.is_finite: return S.true return Ge(self, other, evaluate=False) def __gt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] >= other + 1 if other.is_number and other.is_real: return self.args[0] >= ceiling(other) if self.args[0] == other and other.is_real: return S.false if other is S.NegativeInfinity and self.is_finite: return S.true return Gt(self, other, evaluate=False) def __lt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] < other if other.is_number and other.is_real: return self.args[0] < ceiling(other) if self.args[0] == other and other.is_real: return S.false if other is S.Infinity and self.is_finite: return S.true return Lt(self, other, evaluate=False) @dispatch(floor, Expr) def _eval_is_eq(lhs, rhs): # noqa:F811 return is_eq(lhs.rewrite(ceiling), rhs) or \ is_eq(lhs.rewrite(frac),rhs) class ceiling(RoundFunction): """ Ceiling is a univariate function which returns the smallest integer value not less than its argument. This implementation generalizes ceiling to complex numbers by taking the ceiling of the real and imaginary parts separately. Examples ======== >>> from sympy import ceiling, E, I, S, Float, Rational >>> ceiling(17) 17 >>> ceiling(Rational(23, 10)) 3 >>> ceiling(2*E) 6 >>> ceiling(-Float(0.567)) 0 >>> ceiling(I/2) I >>> ceiling(S(5)/2 + 5*I/2) 3 + 3*I See Also ======== sympy.functions.elementary.integers.floor References ========== .. [1] "Concrete mathematics" by Graham, pp. 87 .. [2] https://mathworld.wolfram.com/CeilingFunction.html """ _dir = 1 @classmethod def _eval_number(cls, arg): if arg.is_Number: return arg.ceiling() elif any(isinstance(i, j) for i in (arg, -arg) for j in (floor, ceiling)): return arg if arg.is_NumberSymbol: return arg.approximation_interval(Integer)[1] def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds arg = self.args[0] arg0 = arg.subs(x, 0) r = self.subs(x, 0) if arg0 is S.NaN or isinstance(arg0, AccumBounds): arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') r = ceiling(arg0) if arg0.is_finite: if arg0 == r: ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1) if ndir.is_negative: return r elif ndir.is_positive: return r + 1 else: raise NotImplementedError("Not sure of sign of %s" % ndir) else: return r return arg.as_leading_term(x, logx=logx, cdir=cdir) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] arg0 = arg.subs(x, 0) r = self.subs(x, 0) if arg0 is S.NaN: arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') r = ceiling(arg0) if arg0.is_infinite: from sympy.calculus.accumulationbounds import AccumBounds from sympy.series.order import Order s = arg._eval_nseries(x, n, logx, cdir) o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1) return s + o if arg0 == r: ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1) if ndir.is_negative: return r elif ndir.is_positive: return r + 1 else: raise NotImplementedError("Not sure of sign of %s" % ndir) else: return r def _eval_rewrite_as_floor(self, arg, **kwargs): return -floor(-arg) def _eval_rewrite_as_frac(self, arg, **kwargs): return arg + frac(-arg) def _eval_is_positive(self): return self.args[0].is_positive def _eval_is_nonpositive(self): return self.args[0].is_nonpositive def __lt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] <= other - 1 if other.is_number and other.is_real: return self.args[0] <= floor(other) if self.args[0] == other and other.is_real: return S.false if other is S.Infinity and self.is_finite: return S.true return Lt(self, other, evaluate=False) def __gt__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] > other if other.is_number and other.is_real: return self.args[0] > floor(other) if self.args[0] == other and other.is_real: return S.false if other is S.NegativeInfinity and self.is_finite: return S.true return Gt(self, other, evaluate=False) def __ge__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] > other - 1 if other.is_number and other.is_real: return self.args[0] > floor(other) if self.args[0] == other and other.is_real: return S.true if other is S.NegativeInfinity and self.is_finite: return S.true return Ge(self, other, evaluate=False) def __le__(self, other): other = S(other) if self.args[0].is_real: if other.is_integer: return self.args[0] <= other if other.is_number and other.is_real: return self.args[0] <= floor(other) if self.args[0] == other and other.is_real: return S.false if other is S.Infinity and self.is_finite: return S.true return Le(self, other, evaluate=False) @dispatch(ceiling, Basic) # type:ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return is_eq(lhs.rewrite(floor), rhs) or is_eq(lhs.rewrite(frac),rhs) class frac(Function): r"""Represents the fractional part of x For real numbers it is defined [1]_ as .. math:: x - \left\lfloor{x}\right\rfloor Examples ======== >>> from sympy import Symbol, frac, Rational, floor, I >>> frac(Rational(4, 3)) 1/3 >>> frac(-Rational(4, 3)) 2/3 returns zero for integer arguments >>> n = Symbol('n', integer=True) >>> frac(n) 0 rewrite as floor >>> x = Symbol('x') >>> frac(x).rewrite(floor) x - floor(x) for complex arguments >>> r = Symbol('r', real=True) >>> t = Symbol('t', real=True) >>> frac(t + I*r) I*frac(r) + frac(t) See Also ======== sympy.functions.elementary.integers.floor sympy.functions.elementary.integers.ceiling References =========== .. [1] https://en.wikipedia.org/wiki/Fractional_part .. [2] https://mathworld.wolfram.com/FractionalPart.html """ @classmethod def eval(cls, arg): from sympy.calculus.accumulationbounds import AccumBounds def _eval(arg): if arg in (S.Infinity, S.NegativeInfinity): return AccumBounds(0, 1) if arg.is_integer: return S.Zero if arg.is_number: if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN else: return arg - floor(arg) return cls(arg, evaluate=False) real, imag = S.Zero, S.Zero for t in Add.make_args(arg): # Two checks are needed for complex arguments # see issue-7649 for details if t.is_imaginary or (S.ImaginaryUnit*t).is_real: i = im(t) if not i.has(S.ImaginaryUnit): imag += i else: real += t else: real += t real = _eval(real) imag = _eval(imag) return real + S.ImaginaryUnit*imag def _eval_rewrite_as_floor(self, arg, **kwargs): return arg - floor(arg) def _eval_rewrite_as_ceiling(self, arg, **kwargs): return arg + ceiling(-arg) def _eval_is_finite(self): return True def _eval_is_real(self): return self.args[0].is_extended_real def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_integer def _eval_is_zero(self): return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer]) def _eval_is_negative(self): return False def __ge__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other <= 0 if other.is_extended_nonpositive: return S.true # Check if other >= 1 res = self._value_one_or_more(other) if res is not None: return not(res) return Ge(self, other, evaluate=False) def __gt__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other < 0 res = self._value_one_or_more(other) if res is not None: return not(res) # Check if other >= 1 if other.is_extended_negative: return S.true return Gt(self, other, evaluate=False) def __le__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other < 0 if other.is_extended_negative: return S.false # Check if other >= 1 res = self._value_one_or_more(other) if res is not None: return res return Le(self, other, evaluate=False) def __lt__(self, other): if self.is_extended_real: other = _sympify(other) # Check if other <= 0 if other.is_extended_nonpositive: return S.false # Check if other >= 1 res = self._value_one_or_more(other) if res is not None: return res return Lt(self, other, evaluate=False) def _value_one_or_more(self, other): if other.is_extended_real: if other.is_number: res = other >= 1 if res and not isinstance(res, Relational): return S.true if other.is_integer and other.is_positive: return S.true def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds arg = self.args[0] arg0 = arg.subs(x, 0) r = self.subs(x, 0) if arg0.is_finite: if r.is_zero: ndir = arg.dir(x, cdir=cdir) if ndir.is_negative: return S.One return (arg - arg0).as_leading_term(x, logx=logx, cdir=cdir) else: return r elif arg0 in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity): return AccumBounds(0, 1) return arg.as_leading_term(x, logx=logx, cdir=cdir) def _eval_nseries(self, x, n, logx, cdir=0): from sympy.series.order import Order arg = self.args[0] arg0 = arg.subs(x, 0) r = self.subs(x, 0) if arg0.is_infinite: from sympy.calculus.accumulationbounds import AccumBounds o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1) + Order(x**n, (x, 0)) return o else: res = (arg - arg0)._eval_nseries(x, n, logx=logx, cdir=cdir) if r.is_zero: ndir = arg.dir(x, cdir=cdir) res += S.One if ndir.is_negative else S.Zero else: res += r return res @dispatch(frac, Basic) # type:ignore def _eval_is_eq(lhs, rhs): # noqa:F811 if (lhs.rewrite(floor) == rhs) or \ (lhs.rewrite(ceiling) == rhs): return True # Check if other < 0 if rhs.is_extended_negative: return False # Check if other >= 1 res = lhs._value_one_or_more(rhs) if res is not None: return False