from sympy.core import Function, S, sympify, NumberKind from sympy.utilities.iterables import sift from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.operations import LatticeOp, ShortCircuit from sympy.core.function import (Application, Lambda, ArgumentIndexError) from sympy.core.expr import Expr from sympy.core.exprtools import factor_terms from sympy.core.mod import Mod from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.core.relational import Eq, Relational from sympy.core.singleton import Singleton from sympy.core.sorting import ordered from sympy.core.symbol import Dummy from sympy.core.rules import Transform from sympy.core.logic import fuzzy_and, fuzzy_or, _torf from sympy.core.traversal import walk from sympy.core.numbers import Integer from sympy.logic.boolalg import And, Or def _minmax_as_Piecewise(op, *args): # helper for Min/Max rewrite as Piecewise from sympy.functions.elementary.piecewise import Piecewise ec = [] for i, a in enumerate(args): c = [Relational(a, args[j], op) for j in range(i + 1, len(args))] ec.append((a, And(*c))) return Piecewise(*ec) class IdentityFunction(Lambda, metaclass=Singleton): """ The identity function Examples ======== >>> from sympy import Id, Symbol >>> x = Symbol('x') >>> Id(x) x """ _symbol = Dummy('x') @property def signature(self): return Tuple(self._symbol) @property def expr(self): return self._symbol Id = S.IdentityFunction ############################################################################### ############################# ROOT and SQUARE ROOT FUNCTION ################### ############################################################################### def sqrt(arg, evaluate=None): """Returns the principal square root. Parameters ========== evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import sqrt, Symbol, S >>> x = Symbol('x') >>> sqrt(x) sqrt(x) >>> sqrt(x)**2 x Note that sqrt(x**2) does not simplify to x. >>> sqrt(x**2) sqrt(x**2) This is because the two are not equal to each other in general. For example, consider x == -1: >>> from sympy import Eq >>> Eq(sqrt(x**2), x).subs(x, -1) False This is because sqrt computes the principal square root, so the square may put the argument in a different branch. This identity does hold if x is positive: >>> y = Symbol('y', positive=True) >>> sqrt(y**2) y You can force this simplification by using the powdenest() function with the force option set to True: >>> from sympy import powdenest >>> sqrt(x**2) sqrt(x**2) >>> powdenest(sqrt(x**2), force=True) x To get both branches of the square root you can use the rootof function: >>> from sympy import rootof >>> [rootof(x**2-3,i) for i in (0,1)] [-sqrt(3), sqrt(3)] Although ``sqrt`` is printed, there is no ``sqrt`` function so looking for ``sqrt`` in an expression will fail: >>> from sympy.utilities.misc import func_name >>> func_name(sqrt(x)) 'Pow' >>> sqrt(x).has(sqrt) False To find ``sqrt`` look for ``Pow`` with an exponent of ``1/2``: >>> (x + 1/sqrt(x)).find(lambda i: i.is_Pow and abs(i.exp) is S.Half) {1/sqrt(x)} See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Square_root .. [2] https://en.wikipedia.org/wiki/Principal_value """ # arg = sympify(arg) is handled by Pow return Pow(arg, S.Half, evaluate=evaluate) def cbrt(arg, evaluate=None): """Returns the principal cube root. Parameters ========== evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import cbrt, Symbol >>> x = Symbol('x') >>> cbrt(x) x**(1/3) >>> cbrt(x)**3 x Note that cbrt(x**3) does not simplify to x. >>> cbrt(x**3) (x**3)**(1/3) This is because the two are not equal to each other in general. For example, consider `x == -1`: >>> from sympy import Eq >>> Eq(cbrt(x**3), x).subs(x, -1) False This is because cbrt computes the principal cube root, this identity does hold if `x` is positive: >>> y = Symbol('y', positive=True) >>> cbrt(y**3) y See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Cube_root .. [2] https://en.wikipedia.org/wiki/Principal_value """ return Pow(arg, Rational(1, 3), evaluate=evaluate) def root(arg, n, k=0, evaluate=None): r"""Returns the *k*-th *n*-th root of ``arg``. Parameters ========== k : int, optional Should be an integer in $\{0, 1, ..., n-1\}$. Defaults to the principal root if $0$. evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import root, Rational >>> from sympy.abc import x, n >>> root(x, 2) sqrt(x) >>> root(x, 3) x**(1/3) >>> root(x, n) x**(1/n) >>> root(x, -Rational(2, 3)) x**(-3/2) To get the k-th n-th root, specify k: >>> root(-2, 3, 2) -(-1)**(2/3)*2**(1/3) To get all n n-th roots you can use the rootof function. The following examples show the roots of unity for n equal 2, 3 and 4: >>> from sympy import rootof >>> [rootof(x**2 - 1, i) for i in range(2)] [-1, 1] >>> [rootof(x**3 - 1,i) for i in range(3)] [1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2] >>> [rootof(x**4 - 1,i) for i in range(4)] [-1, 1, -I, I] SymPy, like other symbolic algebra systems, returns the complex root of negative numbers. This is the principal root and differs from the text-book result that one might be expecting. For example, the cube root of -8 does not come back as -2: >>> root(-8, 3) 2*(-1)**(1/3) The real_root function can be used to either make the principal result real (or simply to return the real root directly): >>> from sympy import real_root >>> real_root(_) -2 >>> real_root(-32, 5) -2 Alternatively, the n//2-th n-th root of a negative number can be computed with root: >>> root(-32, 5, 5//2) -2 See Also ======== sympy.polys.rootoftools.rootof sympy.core.intfunc.integer_nthroot sqrt, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Square_root .. [2] https://en.wikipedia.org/wiki/Real_root .. [3] https://en.wikipedia.org/wiki/Root_of_unity .. [4] https://en.wikipedia.org/wiki/Principal_value .. [5] https://mathworld.wolfram.com/CubeRoot.html """ n = sympify(n) if k: return Mul(Pow(arg, S.One/n, evaluate=evaluate), S.NegativeOne**(2*k/n), evaluate=evaluate) return Pow(arg, 1/n, evaluate=evaluate) def real_root(arg, n=None, evaluate=None): r"""Return the real *n*'th-root of *arg* if possible. Parameters ========== n : int or None, optional If *n* is ``None``, then all instances of $(-n)^{1/\text{odd}}$ will be changed to $-n^{1/\text{odd}}$. This will only create a real root of a principal root. The presence of other factors may cause the result to not be real. evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import root, real_root >>> real_root(-8, 3) -2 >>> root(-8, 3) 2*(-1)**(1/3) >>> real_root(_) -2 If one creates a non-principal root and applies real_root, the result will not be real (so use with caution): >>> root(-8, 3, 2) -2*(-1)**(2/3) >>> real_root(_) -2*(-1)**(2/3) See Also ======== sympy.polys.rootoftools.rootof sympy.core.intfunc.integer_nthroot root, sqrt """ from sympy.functions.elementary.complexes import Abs, im, sign from sympy.functions.elementary.piecewise import Piecewise if n is not None: return Piecewise( (root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))), (Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate), And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))), (root(arg, n, evaluate=evaluate), True)) rv = sympify(arg) n1pow = Transform(lambda x: -(-x.base)**x.exp, lambda x: x.is_Pow and x.base.is_negative and x.exp.is_Rational and x.exp.p == 1 and x.exp.q % 2) return rv.xreplace(n1pow) ############################################################################### ############################# MINIMUM and MAXIMUM ############################# ############################################################################### class MinMaxBase(Expr, LatticeOp): def __new__(cls, *args, **assumptions): from sympy.core.parameters import global_parameters evaluate = assumptions.pop('evaluate', global_parameters.evaluate) args = (sympify(arg) for arg in args) # first standard filter, for cls.zero and cls.identity # also reshape Max(a, Max(b, c)) to Max(a, b, c) if evaluate: try: args = frozenset(cls._new_args_filter(args)) except ShortCircuit: return cls.zero # remove redundant args that are easily identified args = cls._collapse_arguments(args, **assumptions) # find local zeros args = cls._find_localzeros(args, **assumptions) args = frozenset(args) if not args: return cls.identity if len(args) == 1: return list(args).pop() # base creation obj = Expr.__new__(cls, *ordered(args), **assumptions) obj._argset = args return obj @classmethod def _collapse_arguments(cls, args, **assumptions): """Remove redundant args. Examples ======== >>> from sympy import Min, Max >>> from sympy.abc import a, b, c, d, e Any arg in parent that appears in any parent-like function in any of the flat args of parent can be removed from that sub-arg: >>> Min(a, Max(b, Min(a, c, d))) Min(a, Max(b, Min(c, d))) If the arg of parent appears in an opposite-than parent function in any of the flat args of parent that function can be replaced with the arg: >>> Min(a, Max(b, Min(c, d, Max(a, e)))) Min(a, Max(b, Min(a, c, d))) """ if not args: return args args = list(ordered(args)) if cls == Min: other = Max else: other = Min # find global comparable max of Max and min of Min if a new # value is being introduced in these args at position 0 of # the ordered args if args[0].is_number: sifted = mins, maxs = [], [] for i in args: for v in walk(i, Min, Max): if v.args[0].is_comparable: sifted[isinstance(v, Max)].append(v) small = Min.identity for i in mins: v = i.args[0] if v.is_number and (v < small) == True: small = v big = Max.identity for i in maxs: v = i.args[0] if v.is_number and (v > big) == True: big = v # at the point when this function is called from __new__, # there may be more than one numeric arg present since # local zeros have not been handled yet, so look through # more than the first arg if cls == Min: for arg in args: if not arg.is_number: break if (arg < small) == True: small = arg elif cls == Max: for arg in args: if not arg.is_number: break if (arg > big) == True: big = arg T = None if cls == Min: if small != Min.identity: other = Max T = small elif big != Max.identity: other = Min T = big if T is not None: # remove numerical redundancy for i in range(len(args)): a = args[i] if isinstance(a, other): a0 = a.args[0] if ((a0 > T) if other == Max else (a0 < T)) == True: args[i] = cls.identity # remove redundant symbolic args def do(ai, a): if not isinstance(ai, (Min, Max)): return ai cond = a in ai.args if not cond: return ai.func(*[do(i, a) for i in ai.args], evaluate=False) if isinstance(ai, cls): return ai.func(*[do(i, a) for i in ai.args if i != a], evaluate=False) return a for i, a in enumerate(args): args[i + 1:] = [do(ai, a) for ai in args[i + 1:]] # factor out common elements as for # Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z)) # and vice versa when swapping Min/Max -- do this only for the # easy case where all functions contain something in common; # trying to find some optimal subset of args to modify takes # too long def factor_minmax(args): is_other = lambda arg: isinstance(arg, other) other_args, remaining_args = sift(args, is_other, binary=True) if not other_args: return args # Min(Max(x, y, z), Max(x, y, u, v)) -> {x,y}, ({z}, {u,v}) arg_sets = [set(arg.args) for arg in other_args] common = set.intersection(*arg_sets) if not common: return args new_other_args = list(common) arg_sets_diff = [arg_set - common for arg_set in arg_sets] # If any set is empty after removing common then all can be # discarded e.g. Min(Max(a, b, c), Max(a, b)) -> Max(a, b) if all(arg_sets_diff): other_args_diff = [other(*s, evaluate=False) for s in arg_sets_diff] new_other_args.append(cls(*other_args_diff, evaluate=False)) other_args_factored = other(*new_other_args, evaluate=False) return remaining_args + [other_args_factored] if len(args) > 1: args = factor_minmax(args) return args @classmethod def _new_args_filter(cls, arg_sequence): """ Generator filtering args. first standard filter, for cls.zero and cls.identity. Also reshape ``Max(a, Max(b, c))`` to ``Max(a, b, c)``, and check arguments for comparability """ for arg in arg_sequence: # pre-filter, checking comparability of arguments if not isinstance(arg, Expr) or arg.is_extended_real is False or ( arg.is_number and not arg.is_comparable): raise ValueError("The argument '%s' is not comparable." % arg) if arg == cls.zero: raise ShortCircuit(arg) elif arg == cls.identity: continue elif arg.func == cls: yield from arg.args else: yield arg @classmethod def _find_localzeros(cls, values, **options): """ Sequentially allocate values to localzeros. When a value is identified as being more extreme than another member it replaces that member; if this is never true, then the value is simply appended to the localzeros. """ localzeros = set() for v in values: is_newzero = True localzeros_ = list(localzeros) for z in localzeros_: if id(v) == id(z): is_newzero = False else: con = cls._is_connected(v, z) if con: is_newzero = False if con is True or con == cls: localzeros.remove(z) localzeros.update([v]) if is_newzero: localzeros.update([v]) return localzeros @classmethod def _is_connected(cls, x, y): """ Check if x and y are connected somehow. """ for i in range(2): if x == y: return True t, f = Max, Min for op in "><": for j in range(2): try: if op == ">": v = x >= y else: v = x <= y except TypeError: return False # non-real arg if not v.is_Relational: return t if v else f t, f = f, t x, y = y, x x, y = y, x # run next pass with reversed order relative to start # simplification can be expensive, so be conservative # in what is attempted x = factor_terms(x - y) y = S.Zero return False def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da.is_zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_rewrite_as_Abs(self, *args, **kwargs): from sympy.functions.elementary.complexes import Abs s = (args[0] + self.func(*args[1:]))/2 d = abs(args[0] - self.func(*args[1:]))/2 return (s + d if isinstance(self, Max) else s - d).rewrite(Abs) def evalf(self, n=15, **options): return self.func(*[a.evalf(n, **options) for a in self.args]) def n(self, *args, **kwargs): return self.evalf(*args, **kwargs) _eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args) _eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args) _eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args) _eval_is_complex = lambda s: _torf(i.is_complex for i in s.args) _eval_is_composite = lambda s: _torf(i.is_composite for i in s.args) _eval_is_even = lambda s: _torf(i.is_even for i in s.args) _eval_is_finite = lambda s: _torf(i.is_finite for i in s.args) _eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args) _eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args) _eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args) _eval_is_integer = lambda s: _torf(i.is_integer for i in s.args) _eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args) _eval_is_negative = lambda s: _torf(i.is_negative for i in s.args) _eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args) _eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args) _eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args) _eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args) _eval_is_odd = lambda s: _torf(i.is_odd for i in s.args) _eval_is_polar = lambda s: _torf(i.is_polar for i in s.args) _eval_is_positive = lambda s: _torf(i.is_positive for i in s.args) _eval_is_prime = lambda s: _torf(i.is_prime for i in s.args) _eval_is_rational = lambda s: _torf(i.is_rational for i in s.args) _eval_is_real = lambda s: _torf(i.is_real for i in s.args) _eval_is_extended_real = lambda s: _torf(i.is_extended_real for i in s.args) _eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args) _eval_is_zero = lambda s: _torf(i.is_zero for i in s.args) class Max(MinMaxBase, Application): r""" Return, if possible, the maximum value of the list. When number of arguments is equal one, then return this argument. When number of arguments is equal two, then return, if possible, the value from (a, b) that is $\ge$ the other. In common case, when the length of list greater than 2, the task is more complicated. Return only the arguments, which are greater than others, if it is possible to determine directional relation. If is not possible to determine such a relation, return a partially evaluated result. Assumptions are used to make the decision too. Also, only comparable arguments are permitted. It is named ``Max`` and not ``max`` to avoid conflicts with the built-in function ``max``. Examples ======== >>> from sympy import Max, Symbol, oo >>> from sympy.abc import x, y, z >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Max(x, -2) Max(-2, x) >>> Max(x, -2).subs(x, 3) 3 >>> Max(p, -2) p >>> Max(x, y) Max(x, y) >>> Max(x, y) == Max(y, x) True >>> Max(x, Max(y, z)) Max(x, y, z) >>> Max(n, 8, p, 7, -oo) Max(8, p) >>> Max (1, x, oo) oo * Algorithm The task can be considered as searching of supremums in the directed complete partial orders [1]_. The source values are sequentially allocated by the isolated subsets in which supremums are searched and result as Max arguments. If the resulted supremum is single, then it is returned. The isolated subsets are the sets of values which are only the comparable with each other in the current set. E.g. natural numbers are comparable with each other, but not comparable with the `x` symbol. Another example: the symbol `x` with negative assumption is comparable with a natural number. Also there are "least" elements, which are comparable with all others, and have a zero property (maximum or minimum for all elements). For example, in case of $\infty$, the allocation operation is terminated and only this value is returned. Assumption: - if $A > B > C$ then $A > C$ - if $A = B$ then $B$ can be removed References ========== .. [1] https://en.wikipedia.org/wiki/Directed_complete_partial_order .. [2] https://en.wikipedia.org/wiki/Lattice_%28order%29 See Also ======== Min : find minimum values """ zero = S.Infinity identity = S.NegativeInfinity def fdiff( self, argindex ): from sympy.functions.special.delta_functions import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside(self.args[argindex] - self.args[1 - argindex]) newargs = tuple([self.args[i] for i in range(n) if i != argindex]) return Heaviside(self.args[argindex] - Max(*newargs)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy.functions.special.delta_functions import Heaviside return Add(*[j*Mul(*[Heaviside(j - i) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('>=', *args) def _eval_is_positive(self): return fuzzy_or(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_or(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_and(a.is_negative for a in self.args) class Min(MinMaxBase, Application): """ Return, if possible, the minimum value of the list. It is named ``Min`` and not ``min`` to avoid conflicts with the built-in function ``min``. Examples ======== >>> from sympy import Min, Symbol, oo >>> from sympy.abc import x, y >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Min(x, -2) Min(-2, x) >>> Min(x, -2).subs(x, 3) -2 >>> Min(p, -3) -3 >>> Min(x, y) Min(x, y) >>> Min(n, 8, p, -7, p, oo) Min(-7, n) See Also ======== Max : find maximum values """ zero = S.NegativeInfinity identity = S.Infinity def fdiff( self, argindex ): from sympy.functions.special.delta_functions import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside( self.args[1-argindex] - self.args[argindex] ) newargs = tuple([ self.args[i] for i in range(n) if i != argindex]) return Heaviside( Min(*newargs) - self.args[argindex] ) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy.functions.special.delta_functions import Heaviside return Add(*[j*Mul(*[Heaviside(i-j) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('<=', *args) def _eval_is_positive(self): return fuzzy_and(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_and(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_or(a.is_negative for a in self.args) class Rem(Function): """Returns the remainder when ``p`` is divided by ``q`` where ``p`` is finite and ``q`` is not equal to zero. The result, ``p - int(p/q)*q``, has the same sign as the divisor. Parameters ========== p : Expr Dividend. q : Expr Divisor. Notes ===== ``Rem`` corresponds to the ``%`` operator in C. Examples ======== >>> from sympy.abc import x, y >>> from sympy import Rem >>> Rem(x**3, y) Rem(x**3, y) >>> Rem(x**3, y).subs({x: -5, y: 3}) -2 See Also ======== Mod """ kind = NumberKind @classmethod def eval(cls, p, q): """Return the function remainder if both p, q are numbers and q is not zero. """ if q.is_zero: raise ZeroDivisionError("Division by zero") if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False: return S.NaN if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1): return S.Zero if q.is_Number: if p.is_Number: return p - Integer(p/q)*q