from typing import Tuple as tTuple, Union as tUnion from sympy.core.add import Add from sympy.core.cache import cacheit from sympy.core.expr import Expr from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool, fuzzy_and from sympy.core.mod import Mod from sympy.core.numbers import Rational, pi, Integer, Float, equal_valued from sympy.core.relational import Ne, Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol, Dummy from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.combinatorial.numbers import bernoulli, euler from sympy.functions.elementary.complexes import arg as arg_f, im, re from sympy.functions.elementary.exponential import log, exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary._trigonometric_special import ( cos_table, ipartfrac, fermat_coords) from sympy.logic.boolalg import And from sympy.ntheory import factorint from sympy.polys.specialpolys import symmetric_poly from sympy.utilities.iterables import numbered_symbols ############################################################################### ########################## UTILITIES ########################################## ############################################################################### def _imaginary_unit_as_coefficient(arg): """ Helper to extract symbolic coefficient for imaginary unit """ if isinstance(arg, Float): return None else: return arg.as_coefficient(S.ImaginaryUnit) ############################################################################### ########################## TRIGONOMETRIC FUNCTIONS ############################ ############################################################################### class TrigonometricFunction(Function): """Base class for trigonometric functions. """ unbranched = True _singularities = (S.ComplexInfinity,) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False pi_coeff = _pi_coeff(self.args[0]) if pi_coeff is not None and pi_coeff.is_rational: return True else: return s.is_algebraic def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _as_real_imag(self, deep=True, **hints): if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.args[0].expand(deep, **hints), S.Zero) else: return (self.args[0], S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (re, im) def _period(self, general_period, symbol=None): f = expand_mul(self.args[0]) if symbol is None: symbol = tuple(f.free_symbols)[0] if not f.has(symbol): return S.Zero if f == symbol: return general_period if symbol in f.free_symbols: if f.is_Mul: g, h = f.as_independent(symbol) if h == symbol: return general_period/abs(g) if f.is_Add: a, h = f.as_independent(symbol) g, h = h.as_independent(symbol, as_Add=False) if h == symbol: return general_period/abs(g) raise NotImplementedError("Use the periodicity function instead.") @cacheit def _table2(): # If nested sqrt's are worse than un-evaluation # you can require q to be in (1, 2, 3, 4, 6, 12) # q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return # expressions with 2 or fewer sqrt nestings. return { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } def _peeloff_pi(arg): r""" Split ARG into two parts, a "rest" and a multiple of $\pi$. This assumes ARG to be an Add. The multiple of $\pi$ returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.trigonometric import _peeloff_pi >>> from sympy import pi >>> from sympy.abc import x, y >>> _peeloff_pi(x + pi/2) (x, 1/2) >>> _peeloff_pi(x + 2*pi/3 + pi*y) (x + pi*y + pi/6, 1/2) """ pi_coeff = S.Zero rest_terms = [] for a in Add.make_args(arg): K = a.coeff(pi) if K and K.is_rational: pi_coeff += K else: rest_terms.append(a) if pi_coeff is S.Zero: return arg, S.Zero m1 = (pi_coeff % S.Half) m2 = pi_coeff - m1 if m2.is_integer or ((2*m2).is_integer and m2.is_even is False): return Add(*(rest_terms + [m1*pi])), m2 return arg, S.Zero def _pi_coeff(arg: Expr, cycles: int = 1) -> tUnion[Expr, None]: r""" When arg is a Number times $\pi$ (e.g. $3\pi/2$) then return the Number normalized to be in the range $[0, 2]$, else `None`. When an even multiple of $\pi$ is encountered, if it is multiplying something with known parity then the multiple is returned as 0 otherwise as 2. Examples ======== >>> from sympy.functions.elementary.trigonometric import _pi_coeff >>> from sympy import pi, Dummy >>> from sympy.abc import x >>> _pi_coeff(3*x*pi) 3*x >>> _pi_coeff(11*pi/7) 11/7 >>> _pi_coeff(-11*pi/7) 3/7 >>> _pi_coeff(4*pi) 0 >>> _pi_coeff(5*pi) 1 >>> _pi_coeff(5.0*pi) 1 >>> _pi_coeff(5.5*pi) 3/2 >>> _pi_coeff(2 + pi) >>> _pi_coeff(2*Dummy(integer=True)*pi) 2 >>> _pi_coeff(2*Dummy(even=True)*pi) 0 """ if arg is pi: return S.One elif not arg: return S.Zero elif arg.is_Mul: cx = arg.coeff(pi) if cx: c, x = cx.as_coeff_Mul() # pi is not included as coeff if c.is_Float: # recast exact binary fractions to Rationals f = abs(c) % 1 if f != 0: p = -int(round(log(f, 2).evalf())) m = 2**p cm = c*m i = int(cm) if equal_valued(i, cm): c = Rational(i, m) cx = c*x else: c = Rational(int(c)) cx = c*x if x.is_integer: c2 = c % 2 if c2 == 1: return x elif not c2: if x.is_even is not None: # known parity return S.Zero return Integer(2) else: return c2*x return cx elif arg.is_zero: return S.Zero return None class sin(TrigonometricFunction): r""" The sine function. Returns the sine of x (measured in radians). Explanation =========== This function will evaluate automatically in the case $x/\pi$ is some rational number [4]_. For example, if $x$ is a multiple of $\pi$, $\pi/2$, $\pi/3$, $\pi/4$, and $\pi/6$. Examples ======== >>> from sympy import sin, pi >>> from sympy.abc import x >>> sin(x**2).diff(x) 2*x*cos(x**2) >>> sin(1).diff(x) 0 >>> sin(pi) 0 >>> sin(pi/2) 1 >>> sin(pi/6) 1/2 >>> sin(pi/12) -sqrt(2)/4 + sqrt(6)/4 See Also ======== csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] https://dlmf.nist.gov/4.14 .. [3] https://functions.wolfram.com/ElementaryFunctions/Sin .. [4] https://mathworld.wolfram.com/TrigonometryAngles.html """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return cos(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.calculus.accumulationbounds import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg in (S.Infinity, S.NegativeInfinity): return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): from sympy.sets.sets import FiniteSet min, max = arg.min, arg.max d = floor(min/(2*pi)) if min is not S.NegativeInfinity: min = min - d*2*pi if max is not S.Infinity: max = max - d*2*pi if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \ is not S.EmptySet and \ AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), pi*Rational(7, 2))) is not S.EmptySet: return AccumBounds(-1, 1) elif AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \ is not S.EmptySet: return AccumBounds(Min(sin(min), sin(max)), 1) elif AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), pi*Rational(8, 2))) \ is not S.EmptySet: return AccumBounds(-1, Max(sin(min), sin(max))) else: return AccumBounds(Min(sin(min), sin(max)), Max(sin(min), sin(max))) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import sinh return S.ImaginaryUnit*sinh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.NegativeOne**(pi_coeff - S.Half) if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None # https://github.com/sympy/sympy/issues/6048 # transform a sine to a cosine, to avoid redundant code if pi_coeff.is_Rational: x = pi_coeff % 2 if x > 1: return -cls((x % 1)*pi) if 2*x > 1: return cls((1 - x)*pi) narg = ((pi_coeff + Rational(3, 2)) % 2)*pi result = cos(narg) if not isinstance(result, cos): return result if pi_coeff*pi != arg: return cls(pi_coeff*pi) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: m = m*pi return sin(m)*cos(x) + cos(m)*sin(x) if arg.is_zero: return S.Zero if isinstance(arg, asin): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return x/sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return y/sqrt(x**2 + y**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2) if isinstance(arg, acot): x = arg.args[0] return 1/(sqrt(1 + 1/x**2)*x) if isinstance(arg, acsc): x = arg.args[0] return 1/x if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1/x**2) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p*x**2/(n*(n - 1)) else: return S.NegativeOne**(n//2)*x**n/factorial(n) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] if logx is not None: arg = arg.subs(log(x), logx) if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): raise PoleError("Cannot expand %s around 0" % (self)) return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) def _eval_rewrite_as_exp(self, arg, **kwargs): from sympy.functions.elementary.hyperbolic import HyperbolicFunction I = S.ImaginaryUnit if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) - exp(-arg*I))/(2*I) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*x**-I/2 - I*x**I /2 def _eval_rewrite_as_cos(self, arg, **kwargs): return cos(arg - pi/2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg) return 2*tan_half/(1 + tan_half**2) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg) return Piecewise((0, And(Eq(im(arg), 0), Eq(Mod(arg, pi), 0))), (2*cot_half/(1 + cot_half**2), True)) def _eval_rewrite_as_pow(self, arg, **kwargs): return self.rewrite(cos, **kwargs).rewrite(pow, **kwargs) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self.rewrite(cos, **kwargs).rewrite(sqrt, **kwargs) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/csc(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg - pi/2, evaluate=False) def _eval_rewrite_as_sinc(self, arg, **kwargs): return arg*sinc(arg) def _eval_rewrite_as_besselj(self, arg, **kwargs): from sympy.functions.special.bessel import besselj return sqrt(pi*arg/2)*besselj(S.Half, arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy.functions.elementary.hyperbolic import cosh, sinh re, im = self._as_real_imag(deep=deep, **hints) return (sin(re)*cosh(im), cos(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy.functions.special.polynomials import chebyshevt, chebyshevu arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return sx*cy + sy*cx elif arg.is_Mul: n, x = arg.as_coeff_Mul(rational=True) if n.is_Integer: # n will be positive because of .eval # canonicalization # See https://mathworld.wolfram.com/Multiple-AngleFormulas.html if n.is_odd: return S.NegativeOne**((n - 1)/2)*chebyshevt(n, sin(x)) else: return expand_mul(S.NegativeOne**(n/2 - 1)*cos(x)* chebyshevu(n - 1, sin(x)), deep=False) return sin(arg) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = x0/pi if n.is_integer: lt = (arg - n*pi).as_leading_term(x) return (S.NegativeOne**n)*lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in [S.Infinity, S.NegativeInfinity]: return AccumBounds(-1, 1) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_zero(self): rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero: return pi_mult.is_integer def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True class cos(TrigonometricFunction): """ The cosine function. Returns the cosine of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cos, pi >>> from sympy.abc import x >>> cos(x**2).diff(x) -2*x*sin(x**2) >>> cos(1).diff(x) 0 >>> cos(pi) -1 >>> cos(pi/2) 0 >>> cos(2*pi/3) -1/2 >>> cos(pi/12) sqrt(2)/4 + sqrt(6)/4 See Also ======== sin, csc, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] https://dlmf.nist.gov/4.14 .. [3] https://functions.wolfram.com/ElementaryFunctions/Cos """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return -sin(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.functions.special.polynomials import chebyshevt from sympy.calculus.accumulationbounds import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.One elif arg in (S.Infinity, S.NegativeInfinity): # In this case it is better to return AccumBounds(-1, 1) # rather than returning S.NaN, since AccumBounds(-1, 1) # preserves the information that sin(oo) is between # -1 and 1, where S.NaN does not do that. return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return sin(arg + pi/2) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.is_extended_real and arg.is_finite is False: return AccumBounds(-1, 1) if arg.could_extract_minus_sign(): return cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import cosh return cosh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return (S.NegativeOne)**pi_coeff if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None # cosine formula ##################### # https://github.com/sympy/sympy/issues/6048 # explicit calculations are performed for # cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120 # Some other exact values like cos(k pi/240) can be # calculated using a partial-fraction decomposition # by calling cos( X ).rewrite(sqrt) if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*pi return -cls(narg) # If nested sqrt's are worse than un-evaluation # you can require q to be in (1, 2, 3, 4, 6, 12) # q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return # expressions with 2 or fewer sqrt nestings. table2 = _table2() if q in table2: a, b = table2[q] a, b = p*pi/a, p*pi/b nvala, nvalb = cls(a), cls(b) if None in (nvala, nvalb): return None return nvala*nvalb + cls(pi/2 - a)*cls(pi/2 - b) if q > 12: return None cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1) / 4, } if q in cst_table_some: cts = cst_table_some[pi_coeff.q] return chebyshevt(pi_coeff.p, cts).expand() if 0 == q % 2: narg = (pi_coeff*2)*pi nval = cls(narg) if None == nval: return None x = (2*pi_coeff + 1)/2 sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x))) return sign_cos*sqrt( (1 + nval)/2 ) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: m = m*pi return cos(m)*cos(x) - sin(m)*sin(x) if arg.is_zero: return S.One if isinstance(arg, acos): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1/sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return x/sqrt(x**2 + y**2) if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x ** 2) if isinstance(arg, acot): x = arg.args[0] return 1/sqrt(1 + 1/x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1/x**2) if isinstance(arg, asec): x = arg.args[0] return 1/x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p*x**2/(n*(n - 1)) else: return S.NegativeOne**(n//2)*x**n/factorial(n) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] if logx is not None: arg = arg.subs(log(x), logx) if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): raise PoleError("Cannot expand %s around 0" % (self)) return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit from sympy.functions.elementary.hyperbolic import HyperbolicFunction if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp, **kwargs) return (exp(arg*I) + exp(-arg*I))/2 def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return x**I/2 + x**-I/2 def _eval_rewrite_as_sin(self, arg, **kwargs): return sin(arg + pi/2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg)**2 return (1 - tan_half)/(1 + tan_half) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/sin(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg)**2 return Piecewise((1, And(Eq(im(arg), 0), Eq(Mod(arg, 2*pi), 0))), ((cot_half - 1)/(cot_half + 1), True)) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._eval_rewrite_as_sqrt(arg, **kwargs) def _eval_rewrite_as_sqrt(self, arg: Expr, **kwargs): from sympy.functions.special.polynomials import chebyshevt pi_coeff = _pi_coeff(arg) if pi_coeff is None: return None if isinstance(pi_coeff, Integer): return None if not isinstance(pi_coeff, Rational): return None cst_table_some = cos_table() if pi_coeff.q in cst_table_some: rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q]()) if pi_coeff.q < 257: rv = rv.expand() return rv if not pi_coeff.q % 2: # recursively remove factors of 2 pico2 = pi_coeff * 2 nval = cos(pico2 * pi).rewrite(sqrt, **kwargs) x = (pico2 + 1) / 2 sign_cos = -1 if int(x) % 2 else 1 return sign_cos * sqrt((1 + nval) / 2) FC = fermat_coords(pi_coeff.q) if FC: denoms = FC else: denoms = [b**e for b, e in factorint(pi_coeff.q).items()] apart = ipartfrac(*denoms) decomp = (pi_coeff.p * Rational(n, d) for n, d in zip(apart, denoms)) X = [(x[1], x[0]*pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum(x[0] for x in X))._eval_expand_trig().subs(X) if not FC or len(FC) == 1: return pcls return pcls.rewrite(sqrt, **kwargs) def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/sec(arg).rewrite(csc, **kwargs) def _eval_rewrite_as_besselj(self, arg, **kwargs): from sympy.functions.special.bessel import besselj return Piecewise( (sqrt(pi*arg/2)*besselj(-S.Half, arg), Ne(arg, 0)), (1, True) ) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy.functions.elementary.hyperbolic import cosh, sinh re, im = self._as_real_imag(deep=deep, **hints) return (cos(re)*cosh(im), -sin(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy.functions.special.polynomials import chebyshevt arg = self.args[0] x = None if arg.is_Add: # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return cx*cy - sx*sy elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer: return chebyshevt(coeff, cos(terms)) return cos(arg) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = (x0 + pi/2)/pi if n.is_integer: lt = (arg - n*pi + pi/2).as_leading_term(x) return (S.NegativeOne**n)*lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in [S.Infinity, S.NegativeInfinity]: return AccumBounds(-1, 1) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True def _eval_is_zero(self): rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero and pi_mult: return (pi_mult - S.Half).is_integer class tan(TrigonometricFunction): """ The tangent function. Returns the tangent of x (measured in radians). Explanation =========== See :class:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import tan, pi >>> from sympy.abc import x >>> tan(x**2).diff(x) 2*x*(tan(x**2)**2 + 1) >>> tan(1).diff(x) 0 >>> tan(pi/8).expand() -1 + sqrt(2) See Also ======== sin, csc, cos, sec, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] https://dlmf.nist.gov/4.14 .. [3] https://functions.wolfram.com/ElementaryFunctions/Tan """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.One + self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atan @classmethod def eval(cls, arg): from sympy.calculus.accumulationbounds import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/pi) if min is not S.NegativeInfinity: min = min - d*pi if max is not S.Infinity: max = max - d*pi from sympy.sets.sets import FiniteSet if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(3, 2))): return AccumBounds(S.NegativeInfinity, S.Infinity) else: return AccumBounds(tan(min), tan(max)) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import tanh return S.ImaginaryUnit*tanh(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % q # ensure simplified results are returned for n*pi/5, n*pi/10 table10 = { 1: sqrt(1 - 2*sqrt(5)/5), 2: sqrt(5 - 2*sqrt(5)), 3: sqrt(1 + 2*sqrt(5)/5), 4: sqrt(5 + 2*sqrt(5)) } if q in (5, 10): n = 10*p/q if n > 5: n = 10 - n return -table10[n] else: return table10[n] if not pi_coeff.q % 2: narg = pi_coeff*pi*2 cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return 1/sresult - cresult/sresult table2 = _table2() if q in table2: a, b = table2[q] nvala, nvalb = cls(p*pi/a), cls(p*pi/b) if None in (nvala, nvalb): return None return (nvala - nvalb)/(1 + nvala*nvalb) narg = ((pi_coeff + S.Half) % 1 - S.Half)*pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if cresult == 0: return S.ComplexInfinity return (sresult/cresult) if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: tanm = tan(m*pi) if tanm is S.ComplexInfinity: return -cot(x) else: # tanm == 0 return tan(x) if arg.is_zero: return S.Zero if isinstance(arg, atan): return arg.args[0] if isinstance(arg, atan2): y, x = arg.args return y/x if isinstance(arg, asin): x = arg.args[0] return x/sqrt(1 - x**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2)/x if isinstance(arg, acot): x = arg.args[0] return 1/x if isinstance(arg, acsc): x = arg.args[0] return 1/(sqrt(1 - 1/x**2)*x) if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1/x**2)*x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a, b = ((n - 1)//2), 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return S.NegativeOne**a*b*(b - 1)*B/F*x**n def _eval_nseries(self, x, n, logx, cdir=0): i = self.args[0].limit(x, 0)*2/pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return Function._eval_nseries(self, x, n=n, logx=logx) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*(x**-I - x**I)/(x**-I + x**I) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: from sympy.functions.elementary.hyperbolic import cosh, sinh denom = cos(2*re) + cosh(2*im) return (sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_expand_trig(self, **hints): arg = self.args[0] x = None if arg.is_Add: n = len(arg.args) TX = [] for x in arg.args: tx = tan(x, evaluate=False)._eval_expand_trig() TX.append(tx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n + 1): p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, TX))) elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((1 + I*z)**coeff).expand() return (im(P)/re(P)).subs([(z, tan(terms))]) return tan(arg) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit from sympy.functions.elementary.hyperbolic import HyperbolicFunction if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(neg_exp - pos_exp)/(neg_exp + pos_exp) def _eval_rewrite_as_sin(self, x, **kwargs): return 2*sin(x)**2/sin(2*x) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x - pi/2, evaluate=False)/cos(x) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): return 1/cot(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): sin_in_sec_form = sin(arg).rewrite(sec, **kwargs) cos_in_sec_form = cos(arg).rewrite(sec, **kwargs) return sin_in_sec_form/cos_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): sin_in_csc_form = sin(arg).rewrite(csc, **kwargs) cos_in_csc_form = cos(arg).rewrite(csc, **kwargs) return sin_in_csc_form/cos_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos, **kwargs).rewrite(pow, **kwargs) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos, **kwargs).rewrite(sqrt, **kwargs) if y.has(cos): return None return y def _eval_rewrite_as_besselj(self, arg, **kwargs): from sympy.functions.special.bessel import besselj return besselj(S.Half, arg)/besselj(-S.Half, arg) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = 2*x0/pi if n.is_integer: lt = (arg - n*pi/2).as_leading_term(x) return lt if n.is_even else -1/lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): # FIXME: currently tan(pi/2) return zoo return self.args[0].is_extended_real def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_zero(self): rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero: return pi_mult.is_integer def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True class cot(TrigonometricFunction): """ The cotangent function. Returns the cotangent of x (measured in radians). Explanation =========== See :class:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cot, pi >>> from sympy.abc import x >>> cot(x**2).diff(x) 2*x*(-cot(x**2)**2 - 1) >>> cot(1).diff(x) 0 >>> cot(pi/12) sqrt(3) + 2 See Also ======== sin, csc, cos, sec, tan asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] https://dlmf.nist.gov/4.14 .. [3] https://functions.wolfram.com/ElementaryFunctions/Cot """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.NegativeOne - self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acot @classmethod def eval(cls, arg): from sympy.calculus.accumulationbounds import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN if arg.is_zero: return S.ComplexInfinity elif arg in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return -tan(arg + pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import coth return -S.ImaginaryUnit*coth(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.ComplexInfinity if not pi_coeff.is_Rational: narg = pi_coeff*pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: if pi_coeff.q in (5, 10): return tan(pi/2 - arg) if pi_coeff.q > 2 and not pi_coeff.q % 2: narg = pi_coeff*pi*2 cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): return 1/sresult + cresult/sresult q = pi_coeff.q p = pi_coeff.p % q table2 = _table2() if q in table2: a, b = table2[q] nvala, nvalb = cls(p*pi/a), cls(p*pi/b) if None in (nvala, nvalb): return None return (1 + nvala*nvalb)/(nvalb - nvala) narg = (((pi_coeff + S.Half) % 1) - S.Half)*pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return cresult/sresult if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: cotm = cot(m*pi) if cotm is S.ComplexInfinity: return cot(x) else: # cotm == 0 return -tan(x) if arg.is_zero: return S.ComplexInfinity if isinstance(arg, acot): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1/x if isinstance(arg, atan2): y, x = arg.args return x/y if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x**2)/x if isinstance(arg, acos): x = arg.args[0] return x/sqrt(1 - x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1/x**2)*x if isinstance(arg, asec): x = arg.args[0] return 1/(sqrt(1 - 1/x**2)*x) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return S.NegativeOne**((n + 1)//2)*2**(n + 1)*B/F*x**n def _eval_nseries(self, x, n, logx, cdir=0): i = self.args[0].limit(x, 0)/pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: from sympy.functions.elementary.hyperbolic import cosh, sinh denom = cos(2*re) - cosh(2*im) return (-sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_rewrite_as_exp(self, arg, **kwargs): from sympy.functions.elementary.hyperbolic import HyperbolicFunction I = S.ImaginaryUnit if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): arg = arg.func(arg.args[0]).rewrite(exp, **kwargs) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return -I*(x**-I + x**I)/(x**-I - x**I) def _eval_rewrite_as_sin(self, x, **kwargs): return sin(2*x)/(2*(sin(x)**2)) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x)/cos(x - pi/2, evaluate=False) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/sin(arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return 1/tan(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): cos_in_sec_form = cos(arg).rewrite(sec, **kwargs) sin_in_sec_form = sin(arg).rewrite(sec, **kwargs) return cos_in_sec_form/sin_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): cos_in_csc_form = cos(arg).rewrite(csc, **kwargs) sin_in_csc_form = sin(arg).rewrite(csc, **kwargs) return cos_in_csc_form/sin_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos, **kwargs).rewrite(pow, **kwargs) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos, **kwargs).rewrite(sqrt, **kwargs) if y.has(cos): return None return y def _eval_rewrite_as_besselj(self, arg, **kwargs): from sympy.functions.special.bessel import besselj return besselj(-S.Half, arg)/besselj(S.Half, arg) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = 2*x0/pi if n.is_integer: lt = (arg - n*pi/2).as_leading_term(x) return 1/lt if n.is_even else -lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): return self.args[0].is_extended_real def _eval_expand_trig(self, **hints): arg = self.args[0] x = None if arg.is_Add: n = len(arg.args) CX = [] for x in arg.args: cx = cot(x, evaluate=False)._eval_expand_trig() CX.append(cx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n, -1, -1): p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, CX))) elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((z + I)**coeff).expand() return (re(P)/im(P)).subs([(z, cot(terms))]) return cot(arg) # XXX sec and csc return 1/cos and 1/sin def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True def _eval_is_zero(self): rest, pimult = _peeloff_pi(self.args[0]) if pimult and rest.is_zero: return (pimult - S.Half).is_integer def _eval_subs(self, old, new): arg = self.args[0] argnew = arg.subs(old, new) if arg != argnew and (argnew/pi).is_integer: return S.ComplexInfinity return cot(argnew) class ReciprocalTrigonometricFunction(TrigonometricFunction): """Base class for reciprocal functions of trigonometric functions. """ _reciprocal_of = None # mandatory, to be defined in subclass _singularities = (S.ComplexInfinity,) # _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x) # TODO refactor into TrigonometricFunction common parts of # trigonometric functions eval() like even/odd, func(x+2*k*pi), etc. # optional, to be defined in subclasses: _is_even: FuzzyBool = None _is_odd: FuzzyBool = None @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) pi_coeff = _pi_coeff(arg) if (pi_coeff is not None and not (2*pi_coeff).is_integer and pi_coeff.is_Rational): q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*pi if cls._is_odd: return cls(narg) elif cls._is_even: return -cls(narg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] t = cls._reciprocal_of.eval(arg) if t is None: return t elif any(isinstance(i, cos) for i in (t, -t)): return (1/t).rewrite(sec) elif any(isinstance(i, sin) for i in (t, -t)): return (1/t).rewrite(csc) else: return 1/t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t is not None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t is not None and t != self._reciprocal_of(arg): return 1/t def _period(self, symbol): f = expand_mul(self.args[0]) return self._reciprocal_of(f).period(symbol) def fdiff(self, argindex=1): return -self._calculate_reciprocal("fdiff", argindex)/self**2 def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_Pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg) def _eval_rewrite_as_cos(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_expand_trig(self, **hints): return self._calculate_reciprocal("_eval_expand_trig", **hints) def _eval_is_extended_real(self): return self._reciprocal_of(self.args[0])._eval_is_extended_real() def _eval_as_leading_term(self, x, logx=None, cdir=0): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite def _eval_nseries(self, x, n, logx, cdir=0): return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx) class sec(ReciprocalTrigonometricFunction): """ The secant function. Returns the secant of x (measured in radians). Explanation =========== See :class:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import sec >>> from sympy.abc import x >>> sec(x**2).diff(x) 2*x*tan(x**2)*sec(x**2) >>> sec(1).diff(x) 0 See Also ======== sin, csc, cos, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] https://dlmf.nist.gov/4.14 .. [3] https://functions.wolfram.com/ElementaryFunctions/Sec """ _reciprocal_of = cos _is_even = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half_sq = cot(arg/2)**2 return (cot_half_sq + 1)/(cot_half_sq - 1) def _eval_rewrite_as_cos(self, arg, **kwargs): return (1/cos(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/(cos(arg)*sin(arg)) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/cos(arg).rewrite(sin, **kwargs)) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1/cos(arg).rewrite(tan, **kwargs)) def _eval_rewrite_as_csc(self, arg, **kwargs): return csc(pi/2 - arg, evaluate=False) def fdiff(self, argindex=1): if argindex == 1: return tan(self.args[0])*sec(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_besselj(self, arg, **kwargs): from sympy.functions.special.bessel import besselj return Piecewise( (1/(sqrt(pi*arg)/(sqrt(2))*besselj(-S.Half, arg)), Ne(arg, 0)), (1, True) ) def _eval_is_complex(self): arg = self.args[0] if arg.is_complex and (arg/pi - S.Half).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # Reference Formula: # https://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/ if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) k = n//2 return S.NegativeOne**k*euler(2*k)/factorial(2*k)*x**(2*k) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = (x0 + pi/2)/pi if n.is_integer: lt = (arg - n*pi + pi/2).as_leading_term(x) return (S.NegativeOne**n)/lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self class csc(ReciprocalTrigonometricFunction): """ The cosecant function. Returns the cosecant of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import csc >>> from sympy.abc import x >>> csc(x**2).diff(x) -2*x*cot(x**2)*csc(x**2) >>> csc(1).diff(x) 0 See Also ======== sin, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] https://dlmf.nist.gov/4.14 .. [3] https://functions.wolfram.com/ElementaryFunctions/Csc """ _reciprocal_of = sin _is_odd = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/sin(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/(sin(arg)*cos(arg)) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(arg/2) return (1 + cot_half**2)/(2*cot_half) def _eval_rewrite_as_cos(self, arg, **kwargs): return 1/sin(arg).rewrite(cos, **kwargs) def _eval_rewrite_as_sec(self, arg, **kwargs): return sec(pi/2 - arg, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1/sin(arg).rewrite(tan, **kwargs)) def _eval_rewrite_as_besselj(self, arg, **kwargs): from sympy.functions.special.bessel import besselj return sqrt(2/pi)*(1/(sqrt(arg)*besselj(S.Half, arg))) def fdiff(self, argindex=1): if argindex == 1: return -cot(self.args[0])*csc(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = n//2 + 1 return (S.NegativeOne**(k - 1)*2*(2**(2*k - 1) - 1)* bernoulli(2*k)*x**(2*k - 1)/factorial(2*k)) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.complexes import re arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = x0/pi if n.is_integer: lt = (arg - n*pi).as_leading_term(x) return (S.NegativeOne**n)/lt if x0 is S.ComplexInfinity: x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') if x0 in (S.Infinity, S.NegativeInfinity): return AccumBounds(S.NegativeInfinity, S.Infinity) return self.func(x0) if x0.is_finite else self class sinc(Function): r""" Represents an unnormalized sinc function: .. math:: \operatorname{sinc}(x) = \begin{cases} \frac{\sin x}{x} & \qquad x \neq 0 \\ 1 & \qquad x = 0 \end{cases} Examples ======== >>> from sympy import sinc, oo, jn >>> from sympy.abc import x >>> sinc(x) sinc(x) * Automated Evaluation >>> sinc(0) 1 >>> sinc(oo) 0 * Differentiation >>> sinc(x).diff() cos(x)/x - sin(x)/x**2 * Series Expansion >>> sinc(x).series() 1 - x**2/6 + x**4/120 + O(x**6) * As zero'th order spherical Bessel Function >>> sinc(x).rewrite(jn) jn(0, x) See also ======== sin References ========== .. [1] https://en.wikipedia.org/wiki/Sinc_function """ _singularities = (S.ComplexInfinity,) def fdiff(self, argindex=1): x = self.args[0] if argindex == 1: # We would like to return the Piecewise here, but Piecewise.diff # currently can't handle removable singularities, meaning things # like sinc(x).diff(x, 2) give the wrong answer at x = 0. See # https://github.com/sympy/sympy/issues/11402. # # return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true)) return cos(x)/x - sin(x)/x**2 else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_zero: return S.One if arg.is_Number: if arg in [S.Infinity, S.NegativeInfinity]: return S.Zero elif arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.NaN if arg.could_extract_minus_sign(): return cls(-arg) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: if fuzzy_not(arg.is_zero): return S.Zero elif (2*pi_coeff).is_integer: return S.NegativeOne**(pi_coeff - S.Half)/arg def _eval_nseries(self, x, n, logx, cdir=0): x = self.args[0] return (sin(x)/x)._eval_nseries(x, n, logx) def _eval_rewrite_as_jn(self, arg, **kwargs): from sympy.functions.special.bessel import jn return jn(0, arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true)) def _eval_is_zero(self): if self.args[0].is_infinite: return True rest, pi_mult = _peeloff_pi(self.args[0]) if rest.is_zero: return fuzzy_and([pi_mult.is_integer, pi_mult.is_nonzero]) if rest.is_Number and pi_mult.is_integer: return False def _eval_is_real(self): if self.args[0].is_extended_real or self.args[0].is_imaginary: return True _eval_is_finite = _eval_is_real ############################################################################### ########################### TRIGONOMETRIC INVERSES ############################ ############################################################################### class InverseTrigonometricFunction(Function): """Base class for inverse trigonometric functions.""" _singularities = (S.One, S.NegativeOne, S.Zero, S.ComplexInfinity) # type: tTuple[Expr, ...] @staticmethod @cacheit def _asin_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/2: pi/3, sqrt(2)/2: pi/4, 1/sqrt(2): pi/4, sqrt((5 - sqrt(5))/8): pi/5, sqrt(2)*sqrt(5 - sqrt(5))/4: pi/5, sqrt((5 + sqrt(5))/8): pi*Rational(2, 5), sqrt(2)*sqrt(5 + sqrt(5))/4: pi*Rational(2, 5), S.Half: pi/6, sqrt(2 - sqrt(2))/2: pi/8, sqrt(S.Half - sqrt(2)/4): pi/8, sqrt(2 + sqrt(2))/2: pi*Rational(3, 8), sqrt(S.Half + sqrt(2)/4): pi*Rational(3, 8), (sqrt(5) - 1)/4: pi/10, (1 - sqrt(5))/4: -pi/10, (sqrt(5) + 1)/4: pi*Rational(3, 10), sqrt(6)/4 - sqrt(2)/4: pi/12, -sqrt(6)/4 + sqrt(2)/4: -pi/12, (sqrt(3) - 1)/sqrt(8): pi/12, (1 - sqrt(3))/sqrt(8): -pi/12, sqrt(6)/4 + sqrt(2)/4: pi*Rational(5, 12), (1 + sqrt(3))/sqrt(8): pi*Rational(5, 12) } @staticmethod @cacheit def _atan_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/3: pi/6, 1/sqrt(3): pi/6, sqrt(3): pi/3, sqrt(2) - 1: pi/8, 1 - sqrt(2): -pi/8, 1 + sqrt(2): pi*Rational(3, 8), sqrt(5 - 2*sqrt(5)): pi/5, sqrt(5 + 2*sqrt(5)): pi*Rational(2, 5), sqrt(1 - 2*sqrt(5)/5): pi/10, sqrt(1 + 2*sqrt(5)/5): pi*Rational(3, 10), 2 - sqrt(3): pi/12, -2 + sqrt(3): -pi/12, 2 + sqrt(3): pi*Rational(5, 12) } @staticmethod @cacheit def _acsc_table(): # Keys for which could_extract_minus_sign() # will obviously return True are omitted. return { 2*sqrt(3)/3: pi/3, sqrt(2): pi/4, sqrt(2 + 2*sqrt(5)/5): pi/5, 1/sqrt(Rational(5, 8) - sqrt(5)/8): pi/5, sqrt(2 - 2*sqrt(5)/5): pi*Rational(2, 5), 1/sqrt(Rational(5, 8) + sqrt(5)/8): pi*Rational(2, 5), 2: pi/6, sqrt(4 + 2*sqrt(2)): pi/8, 2/sqrt(2 - sqrt(2)): pi/8, sqrt(4 - 2*sqrt(2)): pi*Rational(3, 8), 2/sqrt(2 + sqrt(2)): pi*Rational(3, 8), 1 + sqrt(5): pi/10, sqrt(5) - 1: pi*Rational(3, 10), -(sqrt(5) - 1): pi*Rational(-3, 10), sqrt(6) + sqrt(2): pi/12, sqrt(6) - sqrt(2): pi*Rational(5, 12), -(sqrt(6) - sqrt(2)): pi*Rational(-5, 12) } class asin(InverseTrigonometricFunction): r""" The inverse sine function. Returns the arcsine of x in radians. Explanation =========== ``asin(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the ``eval`` class method). A purely imaginary argument will lead to an asinh expression. Examples ======== >>> from sympy import asin, oo >>> asin(1) pi/2 >>> asin(-1) -pi/2 >>> asin(-oo) oo*I >>> asin(oo) -oo*I See Also ======== sin, csc, cos, sec, tan, cot acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://dlmf.nist.gov/4.23 .. [3] https://functions.wolfram.com/ElementaryFunctions/ArcSin """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self._eval_is_extended_real() and self.args[0].is_positive def _eval_is_negative(self): return self._eval_is_extended_real() and self.args[0].is_negative @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.NegativeInfinity*S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.Infinity*S.ImaginaryUnit elif arg.is_zero: return S.Zero elif arg is S.One: return pi/2 elif arg is S.NegativeOne: return -pi/2 if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return asin_table[arg] i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import asinh return S.ImaginaryUnit*asinh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, sin): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, cos): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acos(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p*(n - 2)**2/(n*(n - 1))*x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return R/F*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # asin arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.NaN: return self.func(arg.as_leading_term(x)) if x0.is_zero: return arg.as_leading_term(x) # Handling branch points if x0 in (-S.One, S.One, S.ComplexInfinity): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - x0**2).is_negative: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_negative: return -pi - self.func(x0) elif im(ndir).is_positive: if x0.is_positive: return pi - self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # asin from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else pi/2 + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else -pi/2 + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - arg0**2).is_negative: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_negative: return -pi - res elif im(ndir).is_positive: if arg0.is_positive: return pi - res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_acos(self, x, **kwargs): return pi/2 - acos(x) def _eval_rewrite_as_atan(self, x, **kwargs): return 2*atan(x/(1 + sqrt(1 - x**2))) def _eval_rewrite_as_log(self, x, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_acot(self, arg, **kwargs): return 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return pi/2 - asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return acsc(1/arg) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sin class acos(InverseTrigonometricFunction): r""" The inverse cosine function. Explanation =========== Returns the arc cosine of x (measured in radians). ``acos(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). ``acos(zoo)`` evaluates to ``zoo`` (see note in :class:`sympy.functions.elementary.trigonometric.asec`) A purely imaginary argument will be rewritten to asinh. Examples ======== >>> from sympy import acos, oo >>> acos(1) 0 >>> acos(0) pi/2 >>> acos(oo) oo*I See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://dlmf.nist.gov/4.23 .. [3] https://functions.wolfram.com/ElementaryFunctions/ArcCos """ def fdiff(self, argindex=1): if argindex == 1: return -1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity*S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.NegativeInfinity*S.ImaginaryUnit elif arg.is_zero: return pi/2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return pi if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return pi/2 - asin_table[arg] elif -arg in asin_table: return pi/2 + asin_table[-arg] i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: return pi/2 - asin(arg) if isinstance(arg, cos): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, sin): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asin(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return pi/2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p*(n - 2)**2/(n*(n - 1))*x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R/F*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # acos arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.NaN: return self.func(arg.as_leading_term(x)) # Handling branch points if x0 == 1: return sqrt(2)*sqrt((S.One - arg).as_leading_term(x)) if x0 in (-S.One, S.ComplexInfinity): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - x0**2).is_negative: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_negative: return 2*pi - self.func(x0) elif im(ndir).is_positive: if x0.is_positive: return -self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def _eval_is_nonnegative(self): return self._eval_is_extended_real() def _eval_nseries(self, x, n, logx, cdir=0): # acos from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else pi + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-oo, -1) U (1, oo) if (1 - arg0**2).is_negative: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_negative: return 2*pi - res elif im(ndir).is_positive: if arg0.is_positive: return -res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_log(self, x, **kwargs): return pi/2 + S.ImaginaryUnit*\ log(S.ImaginaryUnit*x + sqrt(1 - x**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_asin(self, x, **kwargs): return pi/2 - asin(x) def _eval_rewrite_as_atan(self, x, **kwargs): return atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cos def _eval_rewrite_as_acot(self, arg, **kwargs): return pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return pi/2 - acsc(1/arg) def _eval_conjugate(self): z = self.args[0] r = self.func(self.args[0].conjugate()) if z.is_extended_real is False: return r elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive: return r class atan(InverseTrigonometricFunction): r""" The inverse tangent function. Returns the arc tangent of x (measured in radians). Explanation =========== ``atan(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). Examples ======== >>> from sympy import atan, oo >>> atan(0) 0 >>> atan(1) pi/4 >>> atan(oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://dlmf.nist.gov/4.23 .. [3] https://functions.wolfram.com/ElementaryFunctions/ArcTan """ args: tTuple[Expr] _singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) def fdiff(self, argindex=1): if argindex == 1: return 1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_extended_positive def _eval_is_nonnegative(self): return self.args[0].is_extended_nonnegative def _eval_is_zero(self): return self.args[0].is_zero def _eval_is_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return pi/2 elif arg is S.NegativeInfinity: return -pi/2 elif arg.is_zero: return S.Zero elif arg is S.One: return pi/4 elif arg is S.NegativeOne: return -pi/4 if arg is S.ComplexInfinity: from sympy.calculus.accumulationbounds import AccumBounds return AccumBounds(-pi/2, pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: return atan_table[arg] i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import atanh return S.ImaginaryUnit*atanh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, tan): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang if isinstance(arg, cot): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - acot(arg) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return S.NegativeOne**((n - 1)//2)*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # atan arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.NaN: return self.func(arg.as_leading_term(x)) if x0.is_zero: return arg.as_leading_term(x) # Handling branch points if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.ComplexInfinity): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() # Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) if (1 + x0**2).is_negative: ndir = arg.dir(x, cdir if cdir else 1) if re(ndir).is_negative: if im(x0).is_positive: return self.func(x0) - pi elif re(ndir).is_positive: if im(x0).is_negative: return self.func(x0) + pi else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # atan arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit): return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) res = Function._eval_nseries(self, x, n=n, logx=logx) ndir = self.args[0].dir(x, cdir if cdir else 1) if arg0 is S.ComplexInfinity: if re(ndir) > 0: return res - pi return res # Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) if (1 + arg0**2).is_negative: if re(ndir).is_negative: if im(arg0).is_positive: return res - pi elif re(ndir).is_positive: if im(arg0).is_negative: return res + pi else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x) - log(S.One + S.ImaginaryUnit*x)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_aseries(self, n, args0, x, logx): if args0[0] in [S.Infinity, S.NegativeInfinity]: return (pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) else: return super()._eval_aseries(n, args0, x, logx) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tan def _eval_rewrite_as_asin(self, arg, **kwargs): return sqrt(arg**2)/arg*(pi/2 - asin(1/sqrt(1 + arg**2))) def _eval_rewrite_as_acos(self, arg, **kwargs): return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return acot(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return sqrt(arg**2)/arg*(pi/2 - acsc(sqrt(1 + arg**2))) class acot(InverseTrigonometricFunction): r""" The inverse cotangent function. Returns the arc cotangent of x (measured in radians). Explanation =========== ``acot(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, \tilde{\infty}, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). A purely imaginary argument will lead to an ``acoth`` expression. ``acot(x)`` has a branch cut along $(-i, i)$, hence it is discontinuous at 0. Its range for real $x$ is $(-\frac{\pi}{2}, \frac{\pi}{2}]$. Examples ======== >>> from sympy import acot, sqrt >>> acot(0) pi/2 >>> acot(1) pi/4 >>> acot(sqrt(3) - 2) -5*pi/12 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, atan2 References ========== .. [1] https://dlmf.nist.gov/4.23 .. [2] https://functions.wolfram.com/ElementaryFunctions/ArcCot """ _singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) def fdiff(self, argindex=1): if argindex == 1: return -1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_nonnegative def _eval_is_negative(self): return self.args[0].is_negative def _eval_is_extended_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return pi/ 2 elif arg is S.One: return pi/4 elif arg is S.NegativeOne: return -pi/4 if arg is S.ComplexInfinity: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: ang = pi/2 - atan_table[arg] if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang i_coeff = _imaginary_unit_as_coefficient(arg) if i_coeff is not None: from sympy.functions.elementary.hyperbolic import acoth return -S.ImaginaryUnit*acoth(i_coeff) if arg.is_zero: return pi*S.Half if isinstance(arg, cot): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi; return ang if isinstance(arg, tan): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - atan(arg) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return pi/2 # FIX THIS elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return S.NegativeOne**((n + 1)//2)*x**n/n def _eval_as_leading_term(self, x, logx=None, cdir=0): # acot arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.NaN: return self.func(arg.as_leading_term(x)) if x0 is S.ComplexInfinity: return (1/arg).as_leading_term(x) # Handling branch points if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.Zero): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() # Handling points lying on branch cuts [-I, I] if x0.is_imaginary and (1 + x0**2).is_positive: ndir = arg.dir(x, cdir if cdir else 1) if re(ndir).is_positive: if im(x0).is_positive: return self.func(x0) + pi elif re(ndir).is_negative: if im(x0).is_negative: return self.func(x0) - pi else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # acot arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit): return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res ndir = self.args[0].dir(x, cdir if cdir else 1) if arg0.is_zero: if re(ndir) < 0: return res - pi return res # Handling points lying on branch cuts [-I, I] if arg0.is_imaginary and (1 + arg0**2).is_positive: if re(ndir).is_positive: if im(arg0).is_positive: return res + pi elif re(ndir).is_negative: if im(arg0).is_negative: return res - pi else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_aseries(self, n, args0, x, logx): if args0[0] in [S.Infinity, S.NegativeInfinity]: return atan(1/self.args[0])._eval_nseries(x, n, logx) else: return super()._eval_aseries(n, args0, x, logx) def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x) - log(1 + S.ImaginaryUnit/x)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cot def _eval_rewrite_as_asin(self, arg, **kwargs): return (arg*sqrt(1/arg**2)* (pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1)))) def _eval_rewrite_as_acos(self, arg, **kwargs): return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1)) def _eval_rewrite_as_atan(self, arg, **kwargs): return atan(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return arg*sqrt(1/arg**2)*(pi/2 - acsc(sqrt((1 + arg**2)/arg**2))) class asec(InverseTrigonometricFunction): r""" The inverse secant function. Returns the arc secant of x (measured in radians). Explanation =========== ``asec(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the result is a rational multiple of $\pi$ (see the eval class method). ``asec(x)`` has branch cut in the interval $[-1, 1]$. For complex arguments, it can be defined [4]_ as .. math:: \operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z} At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For negative branch cut, the limit .. math:: \lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z} simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which ultimately evaluates to ``zoo``. As ``acos(x) = asec(1/x)``, a similar argument can be given for ``acos(x)``. Examples ======== >>> from sympy import asec, oo >>> asec(1) 0 >>> asec(-1) pi >>> asec(0) zoo >>> asec(-oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://dlmf.nist.gov/4.23 .. [3] https://functions.wolfram.com/ElementaryFunctions/ArcSec .. [4] https://reference.wolfram.com/language/ref/ArcSec.html """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return pi if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return pi/2 if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return pi/2 - acsc_table[arg] elif -arg in acsc_table: return pi/2 + acsc_table[-arg] if arg.is_infinite: return pi/2 if isinstance(arg, sec): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acsc(arg) def fdiff(self, argindex=1): if argindex == 1: return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sec @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.ImaginaryUnit*log(2 / x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) else: k = n // 2 R = RisingFactorial(S.Half, k) * n F = factorial(k) * n // 2 * n // 2 return -S.ImaginaryUnit * R / F * x**n / 4 def _eval_as_leading_term(self, x, logx=None, cdir=0): # asec arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.NaN: return self.func(arg.as_leading_term(x)) # Handling branch points if x0 == 1: return sqrt(2)*sqrt((arg - S.One).as_leading_term(x)) if x0 in (-S.One, S.Zero): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) # Handling points lying on branch cuts (-1, 1) if x0.is_real and (1 - x0**2).is_positive: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_positive: return -self.func(x0) elif im(ndir).is_positive: if x0.is_negative: return 2*pi - self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # asec from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-1, 1) if arg0.is_real and (1 - arg0**2).is_positive: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_positive: return -res elif im(ndir).is_positive: if arg0.is_negative: return 2*pi - res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_is_extended_real(self): x = self.args[0] if x.is_extended_real is False: return False return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative)) def _eval_rewrite_as_log(self, arg, **kwargs): return pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_asin(self, arg, **kwargs): return pi/2 - asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return acos(1/arg) def _eval_rewrite_as_atan(self, x, **kwargs): sx2x = sqrt(x**2)/x return pi/2*(1 - sx2x) + sx2x*atan(sqrt(x**2 - 1)) def _eval_rewrite_as_acot(self, x, **kwargs): sx2x = sqrt(x**2)/x return pi/2*(1 - sx2x) + sx2x*acot(1/sqrt(x**2 - 1)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return pi/2 - acsc(arg) class acsc(InverseTrigonometricFunction): r""" The inverse cosecant function. Returns the arc cosecant of x (measured in radians). Explanation =========== ``acsc(x)`` will evaluate automatically in the cases $x \in \{\infty, -\infty, 0, 1, -1\}$` and for some instances when the result is a rational multiple of $\pi$ (see the ``eval`` class method). Examples ======== >>> from sympy import acsc, oo >>> acsc(1) pi/2 >>> acsc(-1) -pi/2 >>> acsc(oo) 0 >>> acsc(-oo) == acsc(oo) True >>> acsc(0) zoo See Also ======== sin, csc, cos, sec, tan, cot asin, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://dlmf.nist.gov/4.23 .. [3] https://functions.wolfram.com/ElementaryFunctions/ArcCsc """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return pi/2 elif arg is S.NegativeOne: return -pi/2 if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_infinite: return S.Zero if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return acsc_table[arg] if isinstance(arg, csc): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asec(arg) def fdiff(self, argindex=1): if argindex == 1: return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csc @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return pi/2 - S.ImaginaryUnit*log(2) + S.ImaginaryUnit*log(x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) else: k = n // 2 R = RisingFactorial(S.Half, k) * n F = factorial(k) * n // 2 * n // 2 return S.ImaginaryUnit * R / F * x**n / 4 def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsc arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.NaN: return self.func(arg.as_leading_term(x)) # Handling branch points if x0 in (-S.One, S.One, S.Zero): return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() if x0 is S.ComplexInfinity: return (1/arg).as_leading_term(x) # Handling points lying on branch cuts (-1, 1) if x0.is_real and (1 - x0**2).is_positive: ndir = arg.dir(x, cdir if cdir else 1) if im(ndir).is_negative: if x0.is_positive: return pi - self.func(x0) elif im(ndir).is_positive: if x0.is_negative: return -pi - self.func(x0) else: return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): # acsc from sympy.series.order import O arg0 = self.args[0].subs(x, 0) # Handling branch points if arg0 is S.One: t = Dummy('t', positive=True) ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res # Handling points lying on branch cuts (-1, 1) if arg0.is_real and (1 - arg0**2).is_positive: ndir = self.args[0].dir(x, cdir if cdir else 1) if im(ndir).is_negative: if arg0.is_positive: return pi - res elif im(ndir).is_positive: if arg0.is_negative: return -pi - res else: return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) return res def _eval_rewrite_as_log(self, arg, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _eval_rewrite_as_asin(self, arg, **kwargs): return asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return pi/2 - acos(1/arg) def _eval_rewrite_as_atan(self, x, **kwargs): return sqrt(x**2)/x*(pi/2 - atan(sqrt(x**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(pi/2 - acot(1/sqrt(arg**2 - 1))) def _eval_rewrite_as_asec(self, arg, **kwargs): return pi/2 - asec(arg) class atan2(InverseTrigonometricFunction): r""" The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking two arguments `y` and `x`. Signs of both `y` and `x` are considered to determine the appropriate quadrant of `\operatorname{atan}(y/x)`. The range is `(-\pi, \pi]`. The complete definition reads as follows: .. math:: \operatorname{atan2}(y, x) = \begin{cases} \arctan\left(\frac y x\right) & \qquad x > 0 \\ \arctan\left(\frac y x\right) + \pi& \qquad y \ge 0, x < 0 \\ \arctan\left(\frac y x\right) - \pi& \qquad y < 0, x < 0 \\ +\frac{\pi}{2} & \qquad y > 0, x = 0 \\ -\frac{\pi}{2} & \qquad y < 0, x = 0 \\ \text{undefined} & \qquad y = 0, x = 0 \end{cases} Attention: Note the role reversal of both arguments. The `y`-coordinate is the first argument and the `x`-coordinate the second. If either `x` or `y` is complex: .. math:: \operatorname{atan2}(y, x) = -i\log\left(\frac{x + iy}{\sqrt{x^2 + y^2}}\right) Examples ======== Going counter-clock wise around the origin we find the following angles: >>> from sympy import atan2 >>> atan2(0, 1) 0 >>> atan2(1, 1) pi/4 >>> atan2(1, 0) pi/2 >>> atan2(1, -1) 3*pi/4 >>> atan2(0, -1) pi >>> atan2(-1, -1) -3*pi/4 >>> atan2(-1, 0) -pi/2 >>> atan2(-1, 1) -pi/4 which are all correct. Compare this to the results of the ordinary `\operatorname{atan}` function for the point `(x, y) = (-1, 1)` >>> from sympy import atan, S >>> atan(S(1)/-1) -pi/4 >>> atan2(1, -1) 3*pi/4 where only the `\operatorname{atan2}` function reurns what we expect. We can differentiate the function with respect to both arguments: >>> from sympy import diff >>> from sympy.abc import x, y >>> diff(atan2(y, x), x) -y/(x**2 + y**2) >>> diff(atan2(y, x), y) x/(x**2 + y**2) We can express the `\operatorname{atan2}` function in terms of complex logarithms: >>> from sympy import log >>> atan2(y, x).rewrite(log) -I*log((x + I*y)/sqrt(x**2 + y**2)) and in terms of `\operatorname(atan)`: >>> from sympy import atan >>> atan2(y, x).rewrite(atan) Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) but note that this form is undefined on the negative real axis. See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://en.wikipedia.org/wiki/Atan2 .. [3] https://functions.wolfram.com/ElementaryFunctions/ArcTan2 """ @classmethod def eval(cls, y, x): from sympy.functions.special.delta_functions import Heaviside if x is S.NegativeInfinity: if y.is_zero: # Special case y = 0 because we define Heaviside(0) = 1/2 return pi return 2*pi*(Heaviside(re(y))) - pi elif x is S.Infinity: return S.Zero elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number: x = im(x) y = im(y) if x.is_extended_real and y.is_extended_real: if x.is_positive: return atan(y/x) elif x.is_negative: if y.is_negative: return atan(y/x) - pi elif y.is_nonnegative: return atan(y/x) + pi elif x.is_zero: if y.is_positive: return pi/2 elif y.is_negative: return -pi/2 elif y.is_zero: return S.NaN if y.is_zero: if x.is_extended_nonzero: return pi*(S.One - Heaviside(x)) if x.is_number: return Piecewise((pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) if x.is_number and y.is_number: return -S.ImaginaryUnit*log( (x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_log(self, y, x, **kwargs): return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_atan(self, y, x, **kwargs): return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) def _eval_rewrite_as_arg(self, y, x, **kwargs): if x.is_extended_real and y.is_extended_real: return arg_f(x + y*S.ImaginaryUnit) n = x + S.ImaginaryUnit*y d = x**2 + y**2 return arg_f(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d))) def _eval_is_extended_real(self): return self.args[0].is_extended_real and self.args[1].is_extended_real def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def fdiff(self, argindex): y, x = self.args if argindex == 1: # Diff wrt y return x/(x**2 + y**2) elif argindex == 2: # Diff wrt x return -y/(x**2 + y**2) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): y, x = self.args if x.is_extended_real and y.is_extended_real: return super()._eval_evalf(prec)