from sympy.holonomic.recurrence import RecurrenceOperators, RecurrenceOperator from sympy.core.symbol import symbols from sympy.polys.domains.rationalfield import QQ def test_RecurrenceOperator(): n = symbols('n', integer=True) R, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn') assert Sn*n == (n + 1)*Sn assert Sn*n**2 == (n**2+1+2*n)*Sn assert Sn**2*n**2 == (n**2 + 4*n + 4)*Sn**2 p = (Sn**3*n**2 + Sn*n)**2 q = (n**2 + 3*n + 2)*Sn**2 + (2*n**3 + 19*n**2 + 57*n + 52)*Sn**4 + (n**4 + 18*n**3 + \ 117*n**2 + 324*n + 324)*Sn**6 assert p == q def test_RecurrenceOperatorEqPoly(): n = symbols('n', integer=True) R, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn') rr = RecurrenceOperator([n**2, 0, 0], R) rr2 = RecurrenceOperator([n**2, 1, n], R) assert not rr == rr2 # polynomial comparison issue, see https://github.com/sympy/sympy/pull/15799 # should work once that is solved # d = rr.listofpoly[0] # assert rr == d d2 = rr2.listofpoly[0] assert not rr2 == d2 def test_RecurrenceOperatorPow(): n = symbols('n', integer=True) R, _ = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn') rr = RecurrenceOperator([n**2, 0, 0], R) a = RecurrenceOperator([R.base.one], R) for m in range(10): assert a == rr**m a *= rr