from sympy.core.expr import ExprBuilder from sympy.core.function import (Function, FunctionClass, Lambda) from sympy.core.symbol import Dummy from sympy.core.sympify import sympify, _sympify from sympy.matrices.expressions import MatrixExpr from sympy.matrices.matrixbase import MatrixBase class ElementwiseApplyFunction(MatrixExpr): r""" Apply function to a matrix elementwise without evaluating. Examples ======== It can be created by calling ``.applyfunc()`` on a matrix expression: >>> from sympy import MatrixSymbol >>> from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction >>> from sympy import exp >>> X = MatrixSymbol("X", 3, 3) >>> X.applyfunc(exp) Lambda(_d, exp(_d)).(X) Otherwise using the class constructor: >>> from sympy import eye >>> expr = ElementwiseApplyFunction(exp, eye(3)) >>> expr Lambda(_d, exp(_d)).(Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]])) >>> expr.doit() Matrix([ [E, 1, 1], [1, E, 1], [1, 1, E]]) Notice the difference with the real mathematical functions: >>> exp(eye(3)) Matrix([ [E, 0, 0], [0, E, 0], [0, 0, E]]) """ def __new__(cls, function, expr): expr = _sympify(expr) if not expr.is_Matrix: raise ValueError("{} must be a matrix instance.".format(expr)) if expr.shape == (1, 1): # Check if the function returns a matrix, in that case, just apply # the function instead of creating an ElementwiseApplyFunc object: ret = function(expr) if isinstance(ret, MatrixExpr): return ret if not isinstance(function, (FunctionClass, Lambda)): d = Dummy('d') function = Lambda(d, function(d)) function = sympify(function) if not isinstance(function, (FunctionClass, Lambda)): raise ValueError( "{} should be compatible with SymPy function classes." .format(function)) if 1 not in function.nargs: raise ValueError( '{} should be able to accept 1 arguments.'.format(function)) if not isinstance(function, Lambda): d = Dummy('d') function = Lambda(d, function(d)) obj = MatrixExpr.__new__(cls, function, expr) return obj @property def function(self): return self.args[0] @property def expr(self): return self.args[1] @property def shape(self): return self.expr.shape def doit(self, **hints): deep = hints.get("deep", True) expr = self.expr if deep: expr = expr.doit(**hints) function = self.function if isinstance(function, Lambda) and function.is_identity: # This is a Lambda containing the identity function. return expr if isinstance(expr, MatrixBase): return expr.applyfunc(self.function) elif isinstance(expr, ElementwiseApplyFunction): return ElementwiseApplyFunction( lambda x: self.function(expr.function(x)), expr.expr ).doit(**hints) else: return self def _entry(self, i, j, **kwargs): return self.function(self.expr._entry(i, j, **kwargs)) def _get_function_fdiff(self): d = Dummy("d") function = self.function(d) fdiff = function.diff(d) if isinstance(fdiff, Function): fdiff = type(fdiff) else: fdiff = Lambda(d, fdiff) return fdiff def _eval_derivative(self, x): from sympy.matrices.expressions.hadamard import hadamard_product dexpr = self.expr.diff(x) fdiff = self._get_function_fdiff() return hadamard_product( dexpr, ElementwiseApplyFunction(fdiff, self.expr) ) def _eval_derivative_matrix_lines(self, x): from sympy.matrices.expressions.special import Identity from sympy.tensor.array.expressions.array_expressions import ArrayContraction from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct fdiff = self._get_function_fdiff() lr = self.expr._eval_derivative_matrix_lines(x) ewdiff = ElementwiseApplyFunction(fdiff, self.expr) if 1 in x.shape: # Vector: iscolumn = self.shape[1] == 1 for i in lr: if iscolumn: ptr1 = i.first_pointer ptr2 = Identity(self.shape[1]) else: ptr1 = Identity(self.shape[0]) ptr2 = i.second_pointer subexpr = ExprBuilder( ArrayDiagonal, [ ExprBuilder( ArrayTensorProduct, [ ewdiff, ptr1, ptr2, ] ), (0, 2) if iscolumn else (1, 4) ], validator=ArrayDiagonal._validate ) i._lines = [subexpr] i._first_pointer_parent = subexpr.args[0].args i._first_pointer_index = 1 i._second_pointer_parent = subexpr.args[0].args i._second_pointer_index = 2 else: # Matrix case: for i in lr: ptr1 = i.first_pointer ptr2 = i.second_pointer newptr1 = Identity(ptr1.shape[1]) newptr2 = Identity(ptr2.shape[1]) subexpr = ExprBuilder( ArrayContraction, [ ExprBuilder( ArrayTensorProduct, [ptr1, newptr1, ewdiff, ptr2, newptr2] ), (1, 2, 4), (5, 7, 8), ], validator=ArrayContraction._validate ) i._first_pointer_parent = subexpr.args[0].args i._first_pointer_index = 1 i._second_pointer_parent = subexpr.args[0].args i._second_pointer_index = 4 i._lines = [subexpr] return lr def _eval_transpose(self): from sympy.matrices.expressions.transpose import Transpose return self.func(self.function, Transpose(self.expr).doit())