from sympy.core.sympify import _sympify from sympy.matrices.expressions import MatrixExpr from sympy.core import S, Eq, Ge from sympy.core.mul import Mul from sympy.functions.special.tensor_functions import KroneckerDelta class DiagonalMatrix(MatrixExpr): """DiagonalMatrix(M) will create a matrix expression that behaves as though all off-diagonal elements, `M[i, j]` where `i != j`, are zero. Examples ======== >>> from sympy import MatrixSymbol, DiagonalMatrix, Symbol >>> n = Symbol('n', integer=True) >>> m = Symbol('m', integer=True) >>> D = DiagonalMatrix(MatrixSymbol('x', 2, 3)) >>> D[1, 2] 0 >>> D[1, 1] x[1, 1] The length of the diagonal -- the lesser of the two dimensions of `M` -- is accessed through the `diagonal_length` property: >>> D.diagonal_length 2 >>> DiagonalMatrix(MatrixSymbol('x', n + 1, n)).diagonal_length n When one of the dimensions is symbolic the other will be treated as though it is smaller: >>> tall = DiagonalMatrix(MatrixSymbol('x', n, 3)) >>> tall.diagonal_length 3 >>> tall[10, 1] 0 When the size of the diagonal is not known, a value of None will be returned: >>> DiagonalMatrix(MatrixSymbol('x', n, m)).diagonal_length is None True """ arg = property(lambda self: self.args[0]) shape = property(lambda self: self.arg.shape) # type:ignore @property def diagonal_length(self): r, c = self.shape if r.is_Integer and c.is_Integer: m = min(r, c) elif r.is_Integer and not c.is_Integer: m = r elif c.is_Integer and not r.is_Integer: m = c elif r == c: m = r else: try: m = min(r, c) except TypeError: m = None return m def _entry(self, i, j, **kwargs): if self.diagonal_length is not None: if Ge(i, self.diagonal_length) is S.true: return S.Zero elif Ge(j, self.diagonal_length) is S.true: return S.Zero eq = Eq(i, j) if eq is S.true: return self.arg[i, i] elif eq is S.false: return S.Zero return self.arg[i, j]*KroneckerDelta(i, j) class DiagonalOf(MatrixExpr): """DiagonalOf(M) will create a matrix expression that is equivalent to the diagonal of `M`, represented as a single column matrix. Examples ======== >>> from sympy import MatrixSymbol, DiagonalOf, Symbol >>> n = Symbol('n', integer=True) >>> m = Symbol('m', integer=True) >>> x = MatrixSymbol('x', 2, 3) >>> diag = DiagonalOf(x) >>> diag.shape (2, 1) The diagonal can be addressed like a matrix or vector and will return the corresponding element of the original matrix: >>> diag[1, 0] == diag[1] == x[1, 1] True The length of the diagonal -- the lesser of the two dimensions of `M` -- is accessed through the `diagonal_length` property: >>> diag.diagonal_length 2 >>> DiagonalOf(MatrixSymbol('x', n + 1, n)).diagonal_length n When only one of the dimensions is symbolic the other will be treated as though it is smaller: >>> dtall = DiagonalOf(MatrixSymbol('x', n, 3)) >>> dtall.diagonal_length 3 When the size of the diagonal is not known, a value of None will be returned: >>> DiagonalOf(MatrixSymbol('x', n, m)).diagonal_length is None True """ arg = property(lambda self: self.args[0]) @property def shape(self): r, c = self.arg.shape if r.is_Integer and c.is_Integer: m = min(r, c) elif r.is_Integer and not c.is_Integer: m = r elif c.is_Integer and not r.is_Integer: m = c elif r == c: m = r else: try: m = min(r, c) except TypeError: m = None return m, S.One @property def diagonal_length(self): return self.shape[0] def _entry(self, i, j, **kwargs): return self.arg._entry(i, i, **kwargs) class DiagMatrix(MatrixExpr): """ Turn a vector into a diagonal matrix. """ def __new__(cls, vector): vector = _sympify(vector) obj = MatrixExpr.__new__(cls, vector) shape = vector.shape dim = shape[1] if shape[0] == 1 else shape[0] if vector.shape[0] != 1: obj._iscolumn = True else: obj._iscolumn = False obj._shape = (dim, dim) obj._vector = vector return obj @property def shape(self): return self._shape def _entry(self, i, j, **kwargs): if self._iscolumn: result = self._vector._entry(i, 0, **kwargs) else: result = self._vector._entry(0, j, **kwargs) if i != j: result *= KroneckerDelta(i, j) return result def _eval_transpose(self): return self def as_explicit(self): from sympy.matrices.dense import diag return diag(*list(self._vector.as_explicit())) def doit(self, **hints): from sympy.assumptions import ask, Q from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.dense import eye from sympy.matrices.matrixbase import MatrixBase vector = self._vector # This accounts for shape (1, 1) and identity matrices, among others: if ask(Q.diagonal(vector)): return vector if isinstance(vector, MatrixBase): ret = eye(max(vector.shape)) for i in range(ret.shape[0]): ret[i, i] = vector[i] return type(vector)(ret) if vector.is_MatMul: matrices = [arg for arg in vector.args if arg.is_Matrix] scalars = [arg for arg in vector.args if arg not in matrices] if scalars: return Mul.fromiter(scalars)*DiagMatrix(MatMul.fromiter(matrices).doit()).doit() if isinstance(vector, Transpose): vector = vector.arg return DiagMatrix(vector) def diagonalize_vector(vector): return DiagMatrix(vector).doit()