from collections import Counter from sympy.core import Mul, sympify from sympy.core.add import Add from sympy.core.expr import ExprBuilder from sympy.core.sorting import default_sort_key from sympy.functions.elementary.exponential import log from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.matrices.expressions._shape import validate_matadd_integer as validate from sympy.matrices.expressions.special import ZeroMatrix, OneMatrix from sympy.strategies import ( unpack, flatten, condition, exhaust, rm_id, sort ) from sympy.utilities.exceptions import sympy_deprecation_warning def hadamard_product(*matrices): """ Return the elementwise (aka Hadamard) product of matrices. Examples ======== >>> from sympy import hadamard_product, MatrixSymbol >>> A = MatrixSymbol('A', 2, 3) >>> B = MatrixSymbol('B', 2, 3) >>> hadamard_product(A) A >>> hadamard_product(A, B) HadamardProduct(A, B) >>> hadamard_product(A, B)[0, 1] A[0, 1]*B[0, 1] """ if not matrices: raise TypeError("Empty Hadamard product is undefined") if len(matrices) == 1: return matrices[0] return HadamardProduct(*matrices).doit() class HadamardProduct(MatrixExpr): """ Elementwise product of matrix expressions Examples ======== Hadamard product for matrix symbols: >>> from sympy import hadamard_product, HadamardProduct, MatrixSymbol >>> A = MatrixSymbol('A', 5, 5) >>> B = MatrixSymbol('B', 5, 5) >>> isinstance(hadamard_product(A, B), HadamardProduct) True Notes ===== This is a symbolic object that simply stores its argument without evaluating it. To actually compute the product, use the function ``hadamard_product()`` or ``HadamardProduct.doit`` """ is_HadamardProduct = True def __new__(cls, *args, evaluate=False, check=None): args = list(map(sympify, args)) if len(args) == 0: # We currently don't have a way to support one-matrices of generic dimensions: raise ValueError("HadamardProduct needs at least one argument") if not all(isinstance(arg, MatrixExpr) for arg in args): raise TypeError("Mix of Matrix and Scalar symbols") if check is not None: sympy_deprecation_warning( "Passing check to HadamardProduct is deprecated and the check argument will be removed in a future version.", deprecated_since_version="1.11", active_deprecations_target='remove-check-argument-from-matrix-operations') if check is not False: validate(*args) obj = super().__new__(cls, *args) if evaluate: obj = obj.doit(deep=False) return obj @property def shape(self): return self.args[0].shape def _entry(self, i, j, **kwargs): return Mul(*[arg._entry(i, j, **kwargs) for arg in self.args]) def _eval_transpose(self): from sympy.matrices.expressions.transpose import transpose return HadamardProduct(*list(map(transpose, self.args))) def doit(self, **hints): expr = self.func(*(i.doit(**hints) for i in self.args)) # Check for explicit matrices: from sympy.matrices.matrixbase import MatrixBase from sympy.matrices.immutable import ImmutableMatrix explicit = [i for i in expr.args if isinstance(i, MatrixBase)] if explicit: remainder = [i for i in expr.args if i not in explicit] expl_mat = ImmutableMatrix([ Mul.fromiter(i) for i in zip(*explicit) ]).reshape(*self.shape) expr = HadamardProduct(*([expl_mat] + remainder)) return canonicalize(expr) def _eval_derivative(self, x): terms = [] args = list(self.args) for i in range(len(args)): factors = args[:i] + [args[i].diff(x)] + args[i+1:] terms.append(hadamard_product(*factors)) return Add.fromiter(terms) def _eval_derivative_matrix_lines(self, x): from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct from sympy.matrices.expressions.matexpr import _make_matrix with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)] lines = [] for ind in with_x_ind: left_args = self.args[:ind] right_args = self.args[ind+1:] d = self.args[ind]._eval_derivative_matrix_lines(x) hadam = hadamard_product(*(right_args + left_args)) diagonal = [(0, 2), (3, 4)] diagonal = [e for j, e in enumerate(diagonal) if self.shape[j] != 1] for i in d: l1 = i._lines[i._first_line_index] l2 = i._lines[i._second_line_index] subexpr = ExprBuilder( ArrayDiagonal, [ ExprBuilder( ArrayTensorProduct, [ ExprBuilder(_make_matrix, [l1]), hadam, ExprBuilder(_make_matrix, [l2]), ] ), *diagonal], ) i._first_pointer_parent = subexpr.args[0].args[0].args i._first_pointer_index = 0 i._second_pointer_parent = subexpr.args[0].args[2].args i._second_pointer_index = 0 i._lines = [subexpr] lines.append(i) return lines # TODO Implement algorithm for rewriting Hadamard product as diagonal matrix # if matmul identy matrix is multiplied. def canonicalize(x): """Canonicalize the Hadamard product ``x`` with mathematical properties. Examples ======== >>> from sympy import MatrixSymbol, HadamardProduct >>> from sympy import OneMatrix, ZeroMatrix >>> from sympy.matrices.expressions.hadamard import canonicalize >>> from sympy import init_printing >>> init_printing(use_unicode=False) >>> A = MatrixSymbol('A', 2, 2) >>> B = MatrixSymbol('B', 2, 2) >>> C = MatrixSymbol('C', 2, 2) Hadamard product associativity: >>> X = HadamardProduct(A, HadamardProduct(B, C)) >>> X A.*(B.*C) >>> canonicalize(X) A.*B.*C Hadamard product commutativity: >>> X = HadamardProduct(A, B) >>> Y = HadamardProduct(B, A) >>> X A.*B >>> Y B.*A >>> canonicalize(X) A.*B >>> canonicalize(Y) A.*B Hadamard product identity: >>> X = HadamardProduct(A, OneMatrix(2, 2)) >>> X A.*1 >>> canonicalize(X) A Absorbing element of Hadamard product: >>> X = HadamardProduct(A, ZeroMatrix(2, 2)) >>> X A.*0 >>> canonicalize(X) 0 Rewriting to Hadamard Power >>> X = HadamardProduct(A, A, A) >>> X A.*A.*A >>> canonicalize(X) .3 A Notes ===== As the Hadamard product is associative, nested products can be flattened. The Hadamard product is commutative so that factors can be sorted for canonical form. A matrix of only ones is an identity for Hadamard product, so every matrices of only ones can be removed. Any zero matrix will make the whole product a zero matrix. Duplicate elements can be collected and rewritten as HadamardPower References ========== .. [1] https://en.wikipedia.org/wiki/Hadamard_product_(matrices) """ # Associativity rule = condition( lambda x: isinstance(x, HadamardProduct), flatten ) fun = exhaust(rule) x = fun(x) # Identity fun = condition( lambda x: isinstance(x, HadamardProduct), rm_id(lambda x: isinstance(x, OneMatrix)) ) x = fun(x) # Absorbing by Zero Matrix def absorb(x): if any(isinstance(c, ZeroMatrix) for c in x.args): return ZeroMatrix(*x.shape) else: return x fun = condition( lambda x: isinstance(x, HadamardProduct), absorb ) x = fun(x) # Rewriting with HadamardPower if isinstance(x, HadamardProduct): tally = Counter(x.args) new_arg = [] for base, exp in tally.items(): if exp == 1: new_arg.append(base) else: new_arg.append(HadamardPower(base, exp)) x = HadamardProduct(*new_arg) # Commutativity fun = condition( lambda x: isinstance(x, HadamardProduct), sort(default_sort_key) ) x = fun(x) # Unpacking x = unpack(x) return x def hadamard_power(base, exp): base = sympify(base) exp = sympify(exp) if exp == 1: return base if not base.is_Matrix: return base**exp if exp.is_Matrix: raise ValueError("cannot raise expression to a matrix") return HadamardPower(base, exp) class HadamardPower(MatrixExpr): r""" Elementwise power of matrix expressions Parameters ========== base : scalar or matrix exp : scalar or matrix Notes ===== There are four definitions for the hadamard power which can be used. Let's consider `A, B` as `(m, n)` matrices, and `a, b` as scalars. Matrix raised to a scalar exponent: .. math:: A^{\circ b} = \begin{bmatrix} A_{0, 0}^b & A_{0, 1}^b & \cdots & A_{0, n-1}^b \\ A_{1, 0}^b & A_{1, 1}^b & \cdots & A_{1, n-1}^b \\ \vdots & \vdots & \ddots & \vdots \\ A_{m-1, 0}^b & A_{m-1, 1}^b & \cdots & A_{m-1, n-1}^b \end{bmatrix} Scalar raised to a matrix exponent: .. math:: a^{\circ B} = \begin{bmatrix} a^{B_{0, 0}} & a^{B_{0, 1}} & \cdots & a^{B_{0, n-1}} \\ a^{B_{1, 0}} & a^{B_{1, 1}} & \cdots & a^{B_{1, n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ a^{B_{m-1, 0}} & a^{B_{m-1, 1}} & \cdots & a^{B_{m-1, n-1}} \end{bmatrix} Matrix raised to a matrix exponent: .. math:: A^{\circ B} = \begin{bmatrix} A_{0, 0}^{B_{0, 0}} & A_{0, 1}^{B_{0, 1}} & \cdots & A_{0, n-1}^{B_{0, n-1}} \\ A_{1, 0}^{B_{1, 0}} & A_{1, 1}^{B_{1, 1}} & \cdots & A_{1, n-1}^{B_{1, n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m-1, 0}^{B_{m-1, 0}} & A_{m-1, 1}^{B_{m-1, 1}} & \cdots & A_{m-1, n-1}^{B_{m-1, n-1}} \end{bmatrix} Scalar raised to a scalar exponent: .. math:: a^{\circ b} = a^b """ def __new__(cls, base, exp): base = sympify(base) exp = sympify(exp) if base.is_scalar and exp.is_scalar: return base ** exp if isinstance(base, MatrixExpr) and isinstance(exp, MatrixExpr): validate(base, exp) obj = super().__new__(cls, base, exp) return obj @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @property def shape(self): if self.base.is_Matrix: return self.base.shape return self.exp.shape def _entry(self, i, j, **kwargs): base = self.base exp = self.exp if base.is_Matrix: a = base._entry(i, j, **kwargs) elif base.is_scalar: a = base else: raise ValueError( 'The base {} must be a scalar or a matrix.'.format(base)) if exp.is_Matrix: b = exp._entry(i, j, **kwargs) elif exp.is_scalar: b = exp else: raise ValueError( 'The exponent {} must be a scalar or a matrix.'.format(exp)) return a ** b def _eval_transpose(self): from sympy.matrices.expressions.transpose import transpose return HadamardPower(transpose(self.base), self.exp) def _eval_derivative(self, x): dexp = self.exp.diff(x) logbase = self.base.applyfunc(log) dlbase = logbase.diff(x) return hadamard_product( dexp*logbase + self.exp*dlbase, self ) def _eval_derivative_matrix_lines(self, x): from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal from sympy.matrices.expressions.matexpr import _make_matrix lr = self.base._eval_derivative_matrix_lines(x) for i in lr: diagonal = [(1, 2), (3, 4)] diagonal = [e for j, e in enumerate(diagonal) if self.base.shape[j] != 1] l1 = i._lines[i._first_line_index] l2 = i._lines[i._second_line_index] subexpr = ExprBuilder( ArrayDiagonal, [ ExprBuilder( ArrayTensorProduct, [ ExprBuilder(_make_matrix, [l1]), self.exp*hadamard_power(self.base, self.exp-1), ExprBuilder(_make_matrix, [l2]), ] ), *diagonal], validator=ArrayDiagonal._validate ) i._first_pointer_parent = subexpr.args[0].args[0].args i._first_pointer_index = 0 i._first_line_index = 0 i._second_pointer_parent = subexpr.args[0].args[2].args i._second_pointer_index = 0 i._second_line_index = 0 i._lines = [subexpr] return lr