from sympy.core.sympify import _sympify from sympy.core import S, Basic from sympy.matrices.exceptions import NonSquareMatrixError from sympy.matrices.expressions.matpow import MatPow class Inverse(MatPow): """ The multiplicative inverse of a matrix expression This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the ``.inverse()`` method of matrices. Examples ======== >>> from sympy import MatrixSymbol, Inverse >>> A = MatrixSymbol('A', 3, 3) >>> B = MatrixSymbol('B', 3, 3) >>> Inverse(A) A**(-1) >>> A.inverse() == Inverse(A) True >>> (A*B).inverse() B**(-1)*A**(-1) >>> Inverse(A*B) (A*B)**(-1) """ is_Inverse = True exp = S.NegativeOne def __new__(cls, mat, exp=S.NegativeOne): # exp is there to make it consistent with # inverse.func(*inverse.args) == inverse mat = _sympify(mat) exp = _sympify(exp) if not mat.is_Matrix: raise TypeError("mat should be a matrix") if mat.is_square is False: raise NonSquareMatrixError("Inverse of non-square matrix %s" % mat) return Basic.__new__(cls, mat, exp) @property def arg(self): return self.args[0] @property def shape(self): return self.arg.shape def _eval_inverse(self): return self.arg def _eval_transpose(self): return Inverse(self.arg.transpose()) def _eval_adjoint(self): return Inverse(self.arg.adjoint()) def _eval_conjugate(self): return Inverse(self.arg.conjugate()) def _eval_determinant(self): from sympy.matrices.expressions.determinant import det return 1/det(self.arg) def doit(self, **hints): if 'inv_expand' in hints and hints['inv_expand'] == False: return self arg = self.arg if hints.get('deep', True): arg = arg.doit(**hints) return arg.inverse() def _eval_derivative_matrix_lines(self, x): arg = self.args[0] lines = arg._eval_derivative_matrix_lines(x) for line in lines: line.first_pointer *= -self.T line.second_pointer *= self return lines from sympy.assumptions.ask import ask, Q from sympy.assumptions.refine import handlers_dict def refine_Inverse(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> X.I X**(-1) >>> with assuming(Q.orthogonal(X)): ... print(refine(X.I)) X.T """ if ask(Q.orthogonal(expr), assumptions): return expr.arg.T elif ask(Q.unitary(expr), assumptions): return expr.arg.conjugate() elif ask(Q.singular(expr), assumptions): raise ValueError("Inverse of singular matrix %s" % expr.arg) return expr handlers_dict['Inverse'] = refine_Inverse