from sympy.core.function import expand_mul from sympy.core.numbers import I, Rational from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.complexes import Abs from sympy.simplify.simplify import simplify from sympy.matrices.exceptions import NonSquareMatrixError from sympy.matrices import Matrix, zeros, eye, SparseMatrix from sympy.abc import x, y, z from sympy.testing.pytest import raises, slow from sympy.testing.matrices import allclose def test_LUdecomp(): testmat = Matrix([[0, 2, 5, 3], [3, 3, 7, 4], [8, 4, 0, 2], [-2, 6, 3, 4]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(4) testmat = Matrix([[6, -2, 7, 4], [0, 3, 6, 7], [1, -2, 7, 4], [-9, 2, 6, 3]]) L, U, p = testmat.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(4) # non-square testmat = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) L, U, p = testmat.LUdecomposition(rankcheck=False) assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(4, 3) # square and singular testmat = Matrix([[1, 2, 3], [2, 4, 6], [4, 5, 6]]) L, U, p = testmat.LUdecomposition(rankcheck=False) assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - testmat == zeros(3) M = Matrix(((1, x, 1), (2, y, 0), (y, 0, z))) L, U, p = M.LUdecomposition() assert L.is_lower assert U.is_upper assert (L*U).permute_rows(p, 'backward') - M == zeros(3) mL = Matrix(( (1, 0, 0), (2, 3, 0), )) assert mL.is_lower is True assert mL.is_upper is False mU = Matrix(( (1, 2, 3), (0, 4, 5), )) assert mU.is_lower is False assert mU.is_upper is True # test FF LUdecomp M = Matrix([[1, 3, 3], [3, 2, 6], [3, 2, 2]]) P, L, Dee, U = M.LUdecompositionFF() assert P*M == L*Dee.inv()*U M = Matrix([[1, 2, 3, 4], [3, -1, 2, 3], [3, 1, 3, -2], [6, -1, 0, 2]]) P, L, Dee, U = M.LUdecompositionFF() assert P*M == L*Dee.inv()*U M = Matrix([[0, 0, 1], [2, 3, 0], [3, 1, 4]]) P, L, Dee, U = M.LUdecompositionFF() assert P*M == L*Dee.inv()*U # issue 15794 M = Matrix( [[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) raises(ValueError, lambda : M.LUdecomposition_Simple(rankcheck=True)) def test_singular_value_decompositionD(): A = Matrix([[1, 2], [2, 1]]) U, S, V = A.singular_value_decomposition() assert U * S * V.T == A assert U.T * U == eye(U.cols) assert V.T * V == eye(V.cols) B = Matrix([[1, 2]]) U, S, V = B.singular_value_decomposition() assert U * S * V.T == B assert U.T * U == eye(U.cols) assert V.T * V == eye(V.cols) C = Matrix([ [1, 0, 0, 0, 2], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0], [0, 2, 0, 0, 0], ]) U, S, V = C.singular_value_decomposition() assert U * S * V.T == C assert U.T * U == eye(U.cols) assert V.T * V == eye(V.cols) D = Matrix([[Rational(1, 3), sqrt(2)], [0, Rational(1, 4)]]) U, S, V = D.singular_value_decomposition() assert simplify(U.T * U) == eye(U.cols) assert simplify(V.T * V) == eye(V.cols) assert simplify(U * S * V.T) == D def test_QR(): A = Matrix([[1, 2], [2, 3]]) Q, S = A.QRdecomposition() R = Rational assert Q == Matrix([ [ 5**R(-1, 2), (R(2)/5)*(R(1)/5)**R(-1, 2)], [2*5**R(-1, 2), (-R(1)/5)*(R(1)/5)**R(-1, 2)]]) assert S == Matrix([[5**R(1, 2), 8*5**R(-1, 2)], [0, (R(1)/5)**R(1, 2)]]) assert Q*S == A assert Q.T * Q == eye(2) A = Matrix([[1, 1, 1], [1, 1, 3], [2, 3, 4]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[12, 0, -51], [6, 0, 167], [-4, 0, 24]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R x = Symbol('x') A = Matrix([x]) Q, R = A.QRdecomposition() assert Q == Matrix([x / Abs(x)]) assert R == Matrix([Abs(x)]) A = Matrix([[x, 0], [0, x]]) Q, R = A.QRdecomposition() assert Q == x / Abs(x) * Matrix([[1, 0], [0, 1]]) assert R == Abs(x) * Matrix([[1, 0], [0, 1]]) def test_QR_non_square(): # Narrow (cols < rows) matrices A = Matrix([[9, 0, 26], [12, 0, -7], [0, 4, 4], [0, -3, -3]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, -1, 4], [1, 4, -2], [1, 4, 2], [1, -1, 0]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix(2, 1, [1, 2]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R # Wide (cols > rows) matrices A = Matrix([[1, 2, 3], [4, 5, 6]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, 2, 3, 4], [1, 4, 9, 16], [1, 8, 27, 64]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix(1, 2, [1, 2]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R def test_QR_trivial(): # Rank deficient matrices A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R # Zero rank matrices A = Matrix([[0, 0, 0]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0], [0, 0, 0]]) Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0], [0, 0, 0]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R # Rank deficient matrices with zero norm from beginning columns A = Matrix([[0, 0, 0], [1, 2, 3]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0, 0], [1, 2, 3, 4], [0, 0, 0, 0]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0, 0], [1, 2, 3, 4], [0, 0, 0, 0], [2, 4, 6, 8]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R A = Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3]]).T Q, R = A.QRdecomposition() assert Q.T * Q == eye(Q.cols) assert R.is_upper assert A == Q*R def test_QR_float(): A = Matrix([[1, 1], [1, 1.01]]) Q, R = A.QRdecomposition() assert allclose(Q * R, A) assert allclose(Q * Q.T, Matrix.eye(2)) assert allclose(Q.T * Q, Matrix.eye(2)) A = Matrix([[1, 1], [1, 1.001]]) Q, R = A.QRdecomposition() assert allclose(Q * R, A) assert allclose(Q * Q.T, Matrix.eye(2)) assert allclose(Q.T * Q, Matrix.eye(2)) def test_LUdecomposition_Simple_iszerofunc(): # Test if callable passed to matrices.LUdecomposition_Simple() as iszerofunc keyword argument is used inside # matrices.LUdecomposition_Simple() magic_string = "I got passed in!" def goofyiszero(value): raise ValueError(magic_string) try: lu, p = Matrix([[1, 0], [0, 1]]).LUdecomposition_Simple(iszerofunc=goofyiszero) except ValueError as err: assert magic_string == err.args[0] return assert False def test_LUdecomposition_iszerofunc(): # Test if callable passed to matrices.LUdecomposition() as iszerofunc keyword argument is used inside # matrices.LUdecomposition_Simple() magic_string = "I got passed in!" def goofyiszero(value): raise ValueError(magic_string) try: l, u, p = Matrix([[1, 0], [0, 1]]).LUdecomposition(iszerofunc=goofyiszero) except ValueError as err: assert magic_string == err.args[0] return assert False def test_LDLdecomposition(): raises(NonSquareMatrixError, lambda: Matrix((1, 2)).LDLdecomposition()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).LDLdecomposition()) raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).LDLdecomposition()) raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).LDLdecomposition()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).LDLdecomposition(hermitian=False)) A = Matrix(((1, 5), (5, 1))) L, D = A.LDLdecomposition(hermitian=False) assert L * D * L.T == A A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L, D = A.LDLdecomposition() assert L * D * L.T == A assert L.is_lower assert L == Matrix([[1, 0, 0], [ Rational(3, 5), 1, 0], [Rational(-1, 5), Rational(1, 3), 1]]) assert D.is_diagonal() assert D == Matrix([[25, 0, 0], [0, 9, 0], [0, 0, 9]]) A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) L, D = A.LDLdecomposition() assert expand_mul(L * D * L.H) == A assert L.expand() == Matrix([[1, 0, 0], [I/2, 1, 0], [S.Half - I/2, 0, 1]]) assert D.expand() == Matrix(((4, 0, 0), (0, 1, 0), (0, 0, 9))) raises(NonSquareMatrixError, lambda: SparseMatrix((1, 2)).LDLdecomposition()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).LDLdecomposition()) raises(ValueError, lambda: SparseMatrix(((5 + I, 0), (0, 1))).LDLdecomposition()) raises(ValueError, lambda: SparseMatrix(((1, 5), (5, 1))).LDLdecomposition()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).LDLdecomposition(hermitian=False)) A = SparseMatrix(((1, 5), (5, 1))) L, D = A.LDLdecomposition(hermitian=False) assert L * D * L.T == A A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L, D = A.LDLdecomposition() assert L * D * L.T == A assert L.is_lower assert L == Matrix([[1, 0, 0], [ Rational(3, 5), 1, 0], [Rational(-1, 5), Rational(1, 3), 1]]) assert D.is_diagonal() assert D == Matrix([[25, 0, 0], [0, 9, 0], [0, 0, 9]]) A = SparseMatrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) L, D = A.LDLdecomposition() assert expand_mul(L * D * L.H) == A assert L == Matrix(((1, 0, 0), (I/2, 1, 0), (S.Half - I/2, 0, 1))) assert D == Matrix(((4, 0, 0), (0, 1, 0), (0, 0, 9))) def test_pinv_succeeds_with_rank_decomposition_method(): # Test rank decomposition method of pseudoinverse succeeding As = [Matrix([ [61, 89, 55, 20, 71, 0], [62, 96, 85, 85, 16, 0], [69, 56, 17, 4, 54, 0], [10, 54, 91, 41, 71, 0], [ 7, 30, 10, 48, 90, 0], [0,0,0,0,0,0]])] for A in As: A_pinv = A.pinv(method="RD") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA def test_rank_decomposition(): a = Matrix(0, 0, []) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a a = Matrix(1, 1, [5]) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a a = Matrix(3, 3, [1, 2, 3, 1, 2, 3, 1, 2, 3]) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a a = Matrix([ [0, 0, 1, 2, 2, -5, 3], [-1, 5, 2, 2, 1, -7, 5], [0, 0, -2, -3, -3, 8, -5], [-1, 5, 0, -1, -2, 1, 0]]) c, f = a.rank_decomposition() assert f.is_echelon assert c.cols == f.rows == a.rank() assert c * f == a @slow def test_upper_hessenberg_decomposition(): A = Matrix([ [1, 0, sqrt(3)], [sqrt(2), Rational(1, 2), 2], [1, Rational(1, 4), 3], ]) H, P = A.upper_hessenberg_decomposition() assert simplify(P * P.H) == eye(P.cols) assert simplify(P.H * P) == eye(P.cols) assert H.is_upper_hessenberg assert (simplify(P * H * P.H)) == A B = Matrix([ [1, 2, 10], [8, 2, 5], [3, 12, 34], ]) H, P = B.upper_hessenberg_decomposition() assert simplify(P * P.H) == eye(P.cols) assert simplify(P.H * P) == eye(P.cols) assert H.is_upper_hessenberg assert simplify(P * H * P.H) == B C = Matrix([ [1, sqrt(2), 2, 3], [0, 5, 3, 4], [1, 1, 4, sqrt(5)], [0, 2, 2, 3] ]) H, P = C.upper_hessenberg_decomposition() assert simplify(P * P.H) == eye(P.cols) assert simplify(P.H * P) == eye(P.cols) assert H.is_upper_hessenberg assert simplify(P * H * P.H) == C D = Matrix([ [1, 2, 3], [-3, 5, 6], [4, -8, 9], ]) H, P = D.upper_hessenberg_decomposition() assert simplify(P * P.H) == eye(P.cols) assert simplify(P.H * P) == eye(P.cols) assert H.is_upper_hessenberg assert simplify(P * H * P.H) == D E = Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0] ]) H, P = E.upper_hessenberg_decomposition() assert simplify(P * P.H) == eye(P.cols) assert simplify(P.H * P) == eye(P.cols) assert H.is_upper_hessenberg assert simplify(P * H * P.H) == E