# Test Matrix/DomainMatrix interaction. from sympy import GF, ZZ, QQ, EXRAW from sympy.polys.matrices import DomainMatrix, DM from sympy import ( Matrix, MutableMatrix, ImmutableMatrix, SparseMatrix, MutableDenseMatrix, ImmutableDenseMatrix, MutableSparseMatrix, ImmutableSparseMatrix, ) from sympy import symbols, S, sqrt from sympy.testing.pytest import raises x, y = symbols('x y') MATRIX_TYPES = ( Matrix, MutableMatrix, ImmutableMatrix, SparseMatrix, MutableDenseMatrix, ImmutableDenseMatrix, MutableSparseMatrix, ImmutableSparseMatrix, ) IMMUTABLE = ( ImmutableMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix, ) def DMs(items, domain): return DM(items, domain).to_sparse() def test_Matrix_rep_domain(): for Mat in MATRIX_TYPES: M = Mat([[1, 2], [3, 4]]) assert M._rep == DMs([[1, 2], [3, 4]], ZZ) assert (M / 2)._rep == DMs([[(1,2), 1], [(3,2), 2]], QQ) if not isinstance(M, IMMUTABLE): M[0, 0] = x assert M._rep == DMs([[x, 2], [3, 4]], EXRAW) M = Mat([[S(1)/2, 2], [3, 4]]) assert M._rep == DMs([[(1,2), 2], [3, 4]], QQ) if not isinstance(M, IMMUTABLE): M[0, 0] = x assert M._rep == DMs([[x, 2], [3, 4]], EXRAW) dM = DMs([[1, 2], [3, 4]], ZZ) assert Mat._fromrep(dM)._rep == dM # XXX: This is not intended. Perhaps it should be coerced to EXRAW? # The private _fromrep method is never called like this but perhaps it # should be guarded. # # It is not clear how to integrate domains other than ZZ, QQ and EXRAW with # the rest of Matrix or if the public type for this needs to be something # different from Matrix somehow. K = QQ.algebraic_field(sqrt(2)) dM = DM([[1, 2], [3, 4]], K) assert Mat._fromrep(dM)._rep.domain == K def test_Matrix_to_DM(): M = Matrix([[1, 2], [3, 4]]) assert M.to_DM() == DMs([[1, 2], [3, 4]], ZZ) assert M.to_DM() is not M._rep assert M.to_DM(field=True) == DMs([[1, 2], [3, 4]], QQ) assert M.to_DM(domain=QQ) == DMs([[1, 2], [3, 4]], QQ) assert M.to_DM(domain=QQ[x]) == DMs([[1, 2], [3, 4]], QQ[x]) assert M.to_DM(domain=GF(3)) == DMs([[1, 2], [0, 1]], GF(3)) M = Matrix([[1, 2], [3, 4]]) M[0, 0] = x assert M._rep.domain == EXRAW M[0, 0] = 1 assert M.to_DM() == DMs([[1, 2], [3, 4]], ZZ) M = Matrix([[S(1)/2, 2], [3, 4]]) assert M.to_DM() == DMs([[QQ(1,2), 2], [3, 4]], QQ) M = Matrix([[x, 2], [3, 4]]) assert M.to_DM() == DMs([[x, 2], [3, 4]], ZZ[x]) assert M.to_DM(field=True) == DMs([[x, 2], [3, 4]], ZZ.frac_field(x)) M = Matrix([[1/x, 2], [3, 4]]) assert M.to_DM() == DMs([[1/x, 2], [3, 4]], ZZ.frac_field(x)) M = Matrix([[1, sqrt(2)], [3, 4]]) K = QQ.algebraic_field(sqrt(2)) sqrt2 = K.from_sympy(sqrt(2)) # XXX: Maybe K(sqrt(2)) should work M_K = DomainMatrix([[K(1), sqrt2], [K(3), K(4)]], (2, 2), K) assert M.to_DM() == DMs([[1, sqrt(2)], [3, 4]], EXRAW) assert M.to_DM(extension=True) == M_K.to_sparse() # Options cannot be used with the domain parameter M = Matrix([[1, 2], [3, 4]]) raises(TypeError, lambda: M.to_DM(domain=QQ, field=True))