""" We have a few different kind of Matrices Matrix, ImmutableMatrix, MatrixExpr Here we test the extent to which they cooperate """ from sympy.core.symbol import symbols from sympy.matrices import (Matrix, MatrixSymbol, eye, Identity, ImmutableMatrix) from sympy.matrices.expressions import MatrixExpr, MatAdd from sympy.matrices.matrixbase import classof from sympy.testing.pytest import raises SM = MatrixSymbol('X', 3, 3) SV = MatrixSymbol('v', 3, 1) MM = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) IM = ImmutableMatrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) meye = eye(3) imeye = ImmutableMatrix(eye(3)) ideye = Identity(3) a, b, c = symbols('a,b,c') def test_IM_MM(): assert isinstance(MM + IM, ImmutableMatrix) assert isinstance(IM + MM, ImmutableMatrix) assert isinstance(2*IM + MM, ImmutableMatrix) assert MM.equals(IM) def test_ME_MM(): assert isinstance(Identity(3) + MM, MatrixExpr) assert isinstance(SM + MM, MatAdd) assert isinstance(MM + SM, MatAdd) assert (Identity(3) + MM)[1, 1] == 6 def test_equality(): a, b, c = Identity(3), eye(3), ImmutableMatrix(eye(3)) for x in [a, b, c]: for y in [a, b, c]: assert x.equals(y) def test_matrix_symbol_MM(): X = MatrixSymbol('X', 3, 3) Y = eye(3) + X assert Y[1, 1] == 1 + X[1, 1] def test_matrix_symbol_vector_matrix_multiplication(): A = MM * SV B = IM * SV assert A == B C = (SV.T * MM.T).T assert B == C D = (SV.T * IM.T).T assert C == D def test_indexing_interactions(): assert (a * IM)[1, 1] == 5*a assert (SM + IM)[1, 1] == SM[1, 1] + IM[1, 1] assert (SM * IM)[1, 1] == SM[1, 0]*IM[0, 1] + SM[1, 1]*IM[1, 1] + \ SM[1, 2]*IM[2, 1] def test_classof(): A = Matrix(3, 3, range(9)) B = ImmutableMatrix(3, 3, range(9)) C = MatrixSymbol('C', 3, 3) assert classof(A, A) == Matrix assert classof(B, B) == ImmutableMatrix assert classof(A, B) == ImmutableMatrix assert classof(B, A) == ImmutableMatrix raises(TypeError, lambda: classof(A, C))