from sympy.matrices import Matrix from sympy.core.numbers import Rational from sympy.core.symbol import symbols from sympy.solvers import solve def test_columnspace_one(): m = Matrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) basis = m.columnspace() assert basis[0] == Matrix([1, -2, 0, 3]) assert basis[1] == Matrix([2, -5, -3, 6]) assert basis[2] == Matrix([2, -1, 4, -7]) assert len(basis) == 3 assert Matrix.hstack(m, *basis).columnspace() == basis def test_rowspace(): m = Matrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) basis = m.rowspace() assert basis[0] == Matrix([[1, 2, 0, 2, 5]]) assert basis[1] == Matrix([[0, -1, 1, 3, 2]]) assert basis[2] == Matrix([[0, 0, 0, 5, 5]]) assert len(basis) == 3 def test_nullspace_one(): m = Matrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) basis = m.nullspace() assert basis[0] == Matrix([-2, 1, 1, 0, 0]) assert basis[1] == Matrix([-1, -1, 0, -1, 1]) # make sure the null space is really gets zeroed assert all(e.is_zero for e in m*basis[0]) assert all(e.is_zero for e in m*basis[1]) def test_nullspace_second(): # first test reduced row-ech form R = Rational M = Matrix([[5, 7, 2, 1], [1, 6, 2, -1]]) out, tmp = M.rref() assert out == Matrix([[1, 0, -R(2)/23, R(13)/23], [0, 1, R(8)/23, R(-6)/23]]) M = Matrix([[-5, -1, 4, -3, -1], [ 1, -1, -1, 1, 0], [-1, 0, 0, 0, 0], [ 4, 1, -4, 3, 1], [-2, 0, 2, -2, -1]]) assert M*M.nullspace()[0] == Matrix(5, 1, [0]*5) M = Matrix([[ 1, 3, 0, 2, 6, 3, 1], [-2, -6, 0, -2, -8, 3, 1], [ 3, 9, 0, 0, 6, 6, 2], [-1, -3, 0, 1, 0, 9, 3]]) out, tmp = M.rref() assert out == Matrix([[1, 3, 0, 0, 2, 0, 0], [0, 0, 0, 1, 2, 0, 0], [0, 0, 0, 0, 0, 1, R(1)/3], [0, 0, 0, 0, 0, 0, 0]]) # now check the vectors basis = M.nullspace() assert basis[0] == Matrix([-3, 1, 0, 0, 0, 0, 0]) assert basis[1] == Matrix([0, 0, 1, 0, 0, 0, 0]) assert basis[2] == Matrix([-2, 0, 0, -2, 1, 0, 0]) assert basis[3] == Matrix([0, 0, 0, 0, 0, R(-1)/3, 1]) # issue 4797; just see that we can do it when rows > cols M = Matrix([[1, 2], [2, 4], [3, 6]]) assert M.nullspace() def test_columnspace_second(): M = Matrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) # now check the vectors basis = M.columnspace() assert basis[0] == Matrix([1, -2, 0, 3]) assert basis[1] == Matrix([2, -5, -3, 6]) assert basis[2] == Matrix([2, -1, 4, -7]) #check by columnspace definition a, b, c, d, e = symbols('a b c d e') X = Matrix([a, b, c, d, e]) for i in range(len(basis)): eq=M*X-basis[i] assert len(solve(eq, X)) != 0 #check if rank-nullity theorem holds assert M.rank() == len(basis) assert len(M.nullspace()) + len(M.columnspace()) == M.cols