from collections import defaultdict from sympy.utilities.iterables import multiset, is_palindromic as _palindromic from sympy.utilities.misc import as_int def digits(n, b=10, digits=None): """ Return a list of the digits of ``n`` in base ``b``. The first element in the list is ``b`` (or ``-b`` if ``n`` is negative). Examples ======== >>> from sympy.ntheory.digits import digits >>> digits(35) [10, 3, 5] If the number is negative, the negative sign will be placed on the base (which is the first element in the returned list): >>> digits(-35) [-10, 3, 5] Bases other than 10 (and greater than 1) can be selected with ``b``: >>> digits(27, b=2) [2, 1, 1, 0, 1, 1] Use the ``digits`` keyword if a certain number of digits is desired: >>> digits(35, digits=4) [10, 0, 0, 3, 5] Parameters ========== n: integer The number whose digits are returned. b: integer The base in which digits are computed. digits: integer (or None for all digits) The number of digits to be returned (padded with zeros, if necessary). See Also ======== sympy.core.intfunc.num_digits, count_digits """ b = as_int(b) n = as_int(n) if b < 2: raise ValueError("b must be greater than 1") else: x, y = abs(n), [] while x >= b: x, r = divmod(x, b) y.append(r) y.append(x) y.append(-b if n < 0 else b) y.reverse() ndig = len(y) - 1 if digits is not None: if ndig > digits: raise ValueError( "For %s, at least %s digits are needed." % (n, ndig)) elif ndig < digits: y[1:1] = [0]*(digits - ndig) return y def count_digits(n, b=10): """ Return a dictionary whose keys are the digits of ``n`` in the given base, ``b``, with keys indicating the digits appearing in the number and values indicating how many times that digit appeared. Examples ======== >>> from sympy.ntheory import count_digits >>> count_digits(1111339) {1: 4, 3: 2, 9: 1} The digits returned are always represented in base-10 but the number itself can be entered in any format that is understood by Python; the base of the number can also be given if it is different than 10: >>> n = 0xFA; n 250 >>> count_digits(_) {0: 1, 2: 1, 5: 1} >>> count_digits(n, 16) {10: 1, 15: 1} The default dictionary will return a 0 for any digit that did not appear in the number. For example, which digits appear 7 times in ``77!``: >>> from sympy import factorial >>> c77 = count_digits(factorial(77)) >>> [i for i in range(10) if c77[i] == 7] [1, 3, 7, 9] See Also ======== sympy.core.intfunc.num_digits, digits """ rv = defaultdict(int, multiset(digits(n, b)).items()) rv.pop(b) if b in rv else rv.pop(-b) # b or -b is there return rv def is_palindromic(n, b=10): """return True if ``n`` is the same when read from left to right or right to left in the given base, ``b``. Examples ======== >>> from sympy.ntheory import is_palindromic >>> all(is_palindromic(i) for i in (-11, 1, 22, 121)) True The second argument allows you to test numbers in other bases. For example, 88 is palindromic in base-10 but not in base-8: >>> is_palindromic(88, 8) False On the other hand, a number can be palindromic in base-8 but not in base-10: >>> 0o121, is_palindromic(0o121) (81, False) Or it might be palindromic in both bases: >>> oct(121), is_palindromic(121, 8) and is_palindromic(121) ('0o171', True) """ return _palindromic(digits(n, b), 1)