from mpmath.libmp import (fzero, from_int, from_rational, fone, fhalf, bitcount, to_int, mpf_mul, mpf_div, mpf_sub, mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin) from sympy.external.gmpy import gcd, legendre, jacobi from .residue_ntheory import _sqrt_mod_prime_power, is_quad_residue from sympy.utilities.decorator import deprecated from sympy.utilities.memoization import recurrence_memo import math from itertools import count def _pre(): maxn = 10**5 global _factor global _totient _factor = [0]*maxn _totient = [1]*maxn lim = int(maxn**0.5) + 5 for i in range(2, lim): if _factor[i] == 0: for j in range(i*i, maxn, i): if _factor[j] == 0: _factor[j] = i for i in range(2, maxn): if _factor[i] == 0: _factor[i] = i _totient[i] = i-1 continue x = _factor[i] y = i//x if y % x == 0: _totient[i] = _totient[y]*x else: _totient[i] = _totient[y]*(x - 1) def _a(n, k, prec): """ Compute the inner sum in HRR formula [1]_ References ========== .. [1] https://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf """ if k == 1: return fone k1 = k e = 0 p = _factor[k] while k1 % p == 0: k1 //= p e += 1 k2 = k//k1 # k2 = p^e v = 1 - 24*n pi = mpf_pi(prec) if k1 == 1: # k = p^e if p == 2: mod = 8*k v = mod + v % mod v = (v*pow(9, k - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 2, e + 3)[0] arg = mpf_div(mpf_mul( from_int(4*m), pi, prec), from_int(mod), prec) return mpf_mul(mpf_mul( from_int((-1)**e*jacobi(m - 1, m)), mpf_sqrt(from_int(k), prec), prec), mpf_sin(arg, prec), prec) if p == 3: mod = 3*k v = mod + v % mod if e > 1: v = (v*pow(64, k//3 - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 3, e + 1)[0] arg = mpf_div(mpf_mul(from_int(4*m), pi, prec), from_int(mod), prec) return mpf_mul(mpf_mul( from_int(2*(-1)**(e + 1)*legendre(m, 3)), mpf_sqrt(from_int(k//3), prec), prec), mpf_sin(arg, prec), prec) v = k + v % k if v % p == 0: if e == 1: return mpf_mul( from_int(jacobi(3, k)), mpf_sqrt(from_int(k), prec), prec) return fzero if not is_quad_residue(v, p): return fzero _phi = p**(e - 1)*(p - 1) v = (v*pow(576, _phi - 1, k)) m = _sqrt_mod_prime_power(v, p, e)[0] arg = mpf_div( mpf_mul(from_int(4*m), pi, prec), from_int(k), prec) return mpf_mul(mpf_mul( from_int(2*jacobi(3, k)), mpf_sqrt(from_int(k), prec), prec), mpf_cos(arg, prec), prec) if p != 2 or e >= 3: d1, d2 = gcd(k1, 24), gcd(k2, 24) e = 24//(d1*d2) n1 = ((d2*e*n + (k2**2 - 1)//d1)* pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1 n2 = ((d1*e*n + (k1**2 - 1)//d2)* pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec) if e == 2: n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1 n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4 return mpf_mul(mpf_mul( from_int(-1), _a(n1, k1, prec), prec), _a(n2, k2, prec)) n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1 n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec) def _d(n, j, prec, sq23pi, sqrt8): """ Compute the sinh term in the outer sum of the HRR formula. The constants sqrt(2/3*pi) and sqrt(8) must be precomputed. """ j = from_int(j) pi = mpf_pi(prec) a = mpf_div(sq23pi, j, prec) b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec) c = mpf_sqrt(b, prec) ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec) D = mpf_div( mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec) E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec) return mpf_mul(D, E) @recurrence_memo([1, 1]) def _partition_rec(n: int, prev) -> int: """ Calculate the partition function P(n) Parameters ========== n : int nonnegative integer """ v = 0 penta = 0 # pentagonal number: 1, 5, 12, ... for i in count(): penta += 3*i + 1 np = n - penta if np < 0: break s = prev[np] np -= i + 1 # np = n - gp where gp = generalized pentagonal: 2, 7, 15, ... if 0 <= np: s += prev[np] v += -s if i % 2 else s return v def _partition(n: int) -> int: """ Calculate the partition function P(n) Parameters ========== n : int """ if n < 0: return 0 if (n <= 200_000 and n - _partition_rec.cache_length() < 70 or _partition_rec.cache_length() == 2 and n < 14_400): # There will be 2*10**5 elements created here # and n elements created by partition, so in case we # are going to be working with small n, we just # use partition to calculate (and cache) the values # since lookup is used there while summation, using # _factor and _totient, will be used below. But we # only do so if n is relatively close to the length # of the cache since doing 1 calculation here is about # the same as adding 70 elements to the cache. In addition, # the startup here costs about the same as calculating the first # 14,400 values via partition, so we delay startup here unless n # is smaller than that. return _partition_rec(n) if '_factor' not in globals(): _pre() # Estimate number of bits in p(n). This formula could be tidied pbits = int(( math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \ math.log2(10) prec = p = int(pbits*1.1 + 100) # find the number of terms needed so rounded sum will be accurate # using Rademacher's bound M(n, N) for the remainder after a partial # sum of N terms (https://arxiv.org/pdf/1205.5991.pdf, (1.8)) c1 = 44*math.pi**2/(225*math.sqrt(3)) c2 = math.pi*math.sqrt(2)/75 c3 = math.pi*math.sqrt(2/3) def _M(n, N): sqrt = math.sqrt return c1/sqrt(N) + c2*sqrt(N/(n - 1))*math.sinh(c3*sqrt(n)/N) big = max(9, math.ceil(n**0.5)) # should be too large (for n > 65, ceil should work) assert _M(n, big) < 0.5 # else double big until too large while big > 40 and _M(n, big) < 0.5: big //= 2 small = big big = small*2 while big - small > 1: N = (big + small)//2 if (er := _M(n, N)) < 0.5: big = N elif er >= 0.5: small = N M = big # done with function M; now have value # sanity check for expected size of answer if M > 10**5: # i.e. M > maxn raise ValueError("Input too big") # i.e. n > 149832547102 # calculate it s = fzero sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p) sqrt8 = mpf_sqrt(from_int(8), p) for q in range(1, M): a = _a(n, q, p) d = _d(n, q, p, sq23pi, sqrt8) s = mpf_add(s, mpf_mul(a, d), prec) # On average, the terms decrease rapidly in magnitude. # Dynamically reducing the precision greatly improves # performance. p = bitcount(abs(to_int(d))) + 50 return int(to_int(mpf_add(s, fhalf, prec))) @deprecated("""\ The `sympy.ntheory.partitions_.npartitions` has been moved to `sympy.functions.combinatorial.numbers.partition`.""", deprecated_since_version="1.13", active_deprecations_target='deprecated-ntheory-symbolic-functions') def npartitions(n, verbose=False): """ Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers. .. deprecated:: 1.13 The ``npartitions`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.partition` instead. See its documentation for more information. See :ref:`deprecated-ntheory-symbolic-functions` for details. P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_. The correctness of this implementation has been tested through $10^{10}$. Examples ======== >>> from sympy.functions.combinatorial.numbers import partition >>> partition(25) 1958 References ========== .. [1] https://mathworld.wolfram.com/PartitionFunctionP.html """ from sympy.functions.combinatorial.numbers import partition as func_partition return func_partition(n)