from sympy.testing.pytest import raises, XFAIL from sympy.external import import_module from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.function import (Derivative, Function) from sympy.core.mul import Mul from sympy.core.numbers import (E, oo) from sympy.core.power import Pow from sympy.core.relational import (GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality) from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import (binomial, factorial) from sympy.functions.elementary.complexes import (Abs, conjugate) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.integers import (ceiling, floor) from sympy.functions.elementary.miscellaneous import (root, sqrt) from sympy.functions.elementary.trigonometric import (asin, cos, csc, sec, sin, tan) from sympy.integrals.integrals import Integral from sympy.series.limits import Limit from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge from sympy.physics.quantum.state import Bra, Ket from sympy.abc import x, y, z, a, b, c, t, k, n antlr4 = import_module("antlr4") # disable tests if antlr4-python3-runtime is not present disabled = antlr4 is None theta = Symbol('theta') f = Function('f') # shorthand definitions def _Add(a, b): return Add(a, b, evaluate=False) def _Mul(a, b): return Mul(a, b, evaluate=False) def _Pow(a, b): return Pow(a, b, evaluate=False) def _Sqrt(a): return sqrt(a, evaluate=False) def _Conjugate(a): return conjugate(a, evaluate=False) def _Abs(a): return Abs(a, evaluate=False) def _factorial(a): return factorial(a, evaluate=False) def _exp(a): return exp(a, evaluate=False) def _log(a, b): return log(a, b, evaluate=False) def _binomial(n, k): return binomial(n, k, evaluate=False) def test_import(): from sympy.parsing.latex._build_latex_antlr import ( build_parser, check_antlr_version, dir_latex_antlr ) # XXX: It would be better to come up with a test for these... del build_parser, check_antlr_version, dir_latex_antlr # These LaTeX strings should parse to the corresponding SymPy expression GOOD_PAIRS = [ (r"0", 0), (r"1", 1), (r"-3.14", -3.14), (r"(-7.13)(1.5)", _Mul(-7.13, 1.5)), (r"x", x), (r"2x", 2*x), (r"x^2", x**2), (r"x^\frac{1}{2}", _Pow(x, _Pow(2, -1))), (r"x^{3 + 1}", x**_Add(3, 1)), (r"-c", -c), (r"a \cdot b", a * b), (r"a / b", a / b), (r"a \div b", a / b), (r"a + b", a + b), (r"a + b - a", _Add(a+b, -a)), (r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)), (r"(x + y) z", _Mul(_Add(x, y), z)), (r"a'b+ab'", _Add(_Mul(Symbol("a'"), b), _Mul(a, Symbol("b'")))), (r"y''_1", Symbol("y_{1}''")), (r"y_1''", Symbol("y_{1}''")), (r"\left(x + y\right) z", _Mul(_Add(x, y), z)), (r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), (r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), (r"\left[x + y\right] z", _Mul(_Add(x, y), z)), (r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)), (r"1+1", _Add(1, 1)), (r"0+1", _Add(0, 1)), (r"1*2", _Mul(1, 2)), (r"0*1", _Mul(0, 1)), (r"1 \times 2 ", _Mul(1, 2)), (r"x = y", Eq(x, y)), (r"x \neq y", Ne(x, y)), (r"x < y", Lt(x, y)), (r"x > y", Gt(x, y)), (r"x \leq y", Le(x, y)), (r"x \geq y", Ge(x, y)), (r"x \le y", Le(x, y)), (r"x \ge y", Ge(x, y)), (r"\lfloor x \rfloor", floor(x)), (r"\lceil x \rceil", ceiling(x)), (r"\langle x |", Bra('x')), (r"| x \rangle", Ket('x')), (r"\sin \theta", sin(theta)), (r"\sin(\theta)", sin(theta)), (r"\sin^{-1} a", asin(a)), (r"\sin a \cos b", _Mul(sin(a), cos(b))), (r"\sin \cos \theta", sin(cos(theta))), (r"\sin(\cos \theta)", sin(cos(theta))), (r"\frac{a}{b}", a / b), (r"\dfrac{a}{b}", a / b), (r"\tfrac{a}{b}", a / b), (r"\frac12", _Pow(2, -1)), (r"\frac12y", _Mul(_Pow(2, -1), y)), (r"\frac1234", _Mul(_Pow(2, -1), 34)), (r"\frac2{3}", _Mul(2, _Pow(3, -1))), (r"\frac{\sin{x}}2", _Mul(sin(x), _Pow(2, -1))), (r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))), (r"\frac{7}{3}", _Mul(7, _Pow(3, -1))), (r"(\csc x)(\sec y)", csc(x)*sec(y)), (r"\lim_{x \to 3} a", Limit(a, x, 3, dir='+-')), (r"\lim_{x \rightarrow 3} a", Limit(a, x, 3, dir='+-')), (r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3, dir='+-')), (r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3, dir='+-')), (r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3, dir='+-')), (r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir='+')), (r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir='-')), (r"\lim_{x \to 3^+} a", Limit(a, x, 3, dir='+')), (r"\lim_{x \to 3^-} a", Limit(a, x, 3, dir='-')), (r"\infty", oo), (r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Pow(x, -1), x, oo)), (r"\frac{d}{dx} x", Derivative(x, x)), (r"\frac{d}{dt} x", Derivative(x, t)), (r"f(x)", f(x)), (r"f(x, y)", f(x, y)), (r"f(x, y, z)", f(x, y, z)), (r"f'_1(x)", Function("f_{1}'")(x)), (r"f_{1}''(x+y)", Function("f_{1}''")(x+y)), (r"\frac{d f(x)}{dx}", Derivative(f(x), x)), (r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)), (r"x \neq y", Unequality(x, y)), (r"|x|", _Abs(x)), (r"||x||", _Abs(Abs(x))), (r"|x||y|", _Abs(x)*_Abs(y)), (r"||x||y||", _Abs(_Abs(x)*_Abs(y))), (r"\pi^{|xy|}", Symbol('pi')**_Abs(x*y)), (r"\int x dx", Integral(x, x)), (r"\int x d\theta", Integral(x, theta)), (r"\int (x^2 - y)dx", Integral(x**2 - y, x)), (r"\int x + a dx", Integral(_Add(x, a), x)), (r"\int da", Integral(1, a)), (r"\int_0^7 dx", Integral(1, (x, 0, 7))), (r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))), (r"\int_a^b x dx", Integral(x, (x, a, b))), (r"\int^b_a x dx", Integral(x, (x, a, b))), (r"\int_{a}^b x dx", Integral(x, (x, a, b))), (r"\int^{b}_a x dx", Integral(x, (x, a, b))), (r"\int_{a}^{b} x dx", Integral(x, (x, a, b))), (r"\int^{b}_{a} x dx", Integral(x, (x, a, b))), (r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), (r"\int (x+a)", Integral(_Add(x, a), x)), (r"\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)), (r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)), (r"\int \frac{3 dz}{z}", Integral(3*Pow(z, -1), z)), (r"\int \frac{1}{x} dx", Integral(Pow(x, -1), x)), (r"\int \frac{1}{a} + \frac{1}{b} dx", Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)), (r"\int \frac{3 \cdot d\theta}{\theta}", Integral(3*_Pow(theta, -1), theta)), (r"\int \frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)), (r"x_0", Symbol('x_{0}')), (r"x_{1}", Symbol('x_{1}')), (r"x_a", Symbol('x_{a}')), (r"x_{b}", Symbol('x_{b}')), (r"h_\theta", Symbol('h_{theta}')), (r"h_{\theta}", Symbol('h_{theta}')), (r"h_{\theta}(x_0, x_1)", Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))), (r"x!", _factorial(x)), (r"100!", _factorial(100)), (r"\theta!", _factorial(theta)), (r"(x + 1)!", _factorial(_Add(x, 1))), (r"(x!)!", _factorial(_factorial(x))), (r"x!!!", _factorial(_factorial(_factorial(x)))), (r"5!7!", _Mul(_factorial(5), _factorial(7))), (r"\sqrt{x}", sqrt(x)), (r"\sqrt{x + b}", sqrt(_Add(x, b))), (r"\sqrt[3]{\sin x}", root(sin(x), 3)), (r"\sqrt[y]{\sin x}", root(sin(x), y)), (r"\sqrt[\theta]{\sin x}", root(sin(x), theta)), (r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))), (r"\overline{z}", _Conjugate(z)), (r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))), (r"\overline{x + y}", _Conjugate(_Add(x, y))), (r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)), (r"x < y", StrictLessThan(x, y)), (r"x \leq y", LessThan(x, y)), (r"x > y", StrictGreaterThan(x, y)), (r"x \geq y", GreaterThan(x, y)), (r"\mathit{x}", Symbol('x')), (r"\mathit{test}", Symbol('test')), (r"\mathit{TEST}", Symbol('TEST')), (r"\mathit{HELLO world}", Symbol('HELLO world')), (r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))), (r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))), (r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))), (r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))), (r"\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))), (r"\sum_{n = 0}^{\infty} \frac{1}{n!}", Sum(_Pow(_factorial(n), -1), (n, 0, oo))), (r"\prod_{a = b}^{c} x", Product(x, (a, b, c))), (r"\prod_{a = b}^c x", Product(x, (a, b, c))), (r"\prod^{c}_{a = b} x", Product(x, (a, b, c))), (r"\prod^c_{a = b} x", Product(x, (a, b, c))), (r"\exp x", _exp(x)), (r"\exp(x)", _exp(x)), (r"\lg x", _log(x, 10)), (r"\ln x", _log(x, E)), (r"\ln xy", _log(x*y, E)), (r"\log x", _log(x, E)), (r"\log xy", _log(x*y, E)), (r"\log_{2} x", _log(x, 2)), (r"\log_{a} x", _log(x, a)), (r"\log_{11} x", _log(x, 11)), (r"\log_{a^2} x", _log(x, _Pow(a, 2))), (r"[x]", x), (r"[a + b]", _Add(a, b)), (r"\frac{d}{dx} [ \tan x ]", Derivative(tan(x), x)), (r"\binom{n}{k}", _binomial(n, k)), (r"\tbinom{n}{k}", _binomial(n, k)), (r"\dbinom{n}{k}", _binomial(n, k)), (r"\binom{n}{0}", _binomial(n, 0)), (r"x^\binom{n}{k}", _Pow(x, _binomial(n, k))), (r"a \, b", _Mul(a, b)), (r"a \thinspace b", _Mul(a, b)), (r"a \: b", _Mul(a, b)), (r"a \medspace b", _Mul(a, b)), (r"a \; b", _Mul(a, b)), (r"a \thickspace b", _Mul(a, b)), (r"a \quad b", _Mul(a, b)), (r"a \qquad b", _Mul(a, b)), (r"a \! b", _Mul(a, b)), (r"a \negthinspace b", _Mul(a, b)), (r"a \negmedspace b", _Mul(a, b)), (r"a \negthickspace b", _Mul(a, b)), (r"\int x \, dx", Integral(x, x)), (r"\log_2 x", _log(x, 2)), (r"\log_a x", _log(x, a)), (r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))), (r"3x - 1", _Add(_Mul(3, x), -1)) ] def test_parseable(): from sympy.parsing.latex import parse_latex for latex_str, sympy_expr in GOOD_PAIRS: assert parse_latex(latex_str) == sympy_expr, latex_str # These bad LaTeX strings should raise a LaTeXParsingError when parsed BAD_STRINGS = [ r"(", r")", r"\frac{d}{dx}", r"(\frac{d}{dx})", r"\sqrt{}", r"\sqrt", r"\overline{}", r"\overline", r"{", r"}", r"\mathit{x + y}", r"\mathit{21}", r"\frac{2}{}", r"\frac{}{2}", r"\int", r"!", r"!0", r"_", r"^", r"|", r"||x|", r"()", r"((((((((((((((((()))))))))))))))))", r"-", r"\frac{d}{dx} + \frac{d}{dt}", r"f(x,,y)", r"f(x,y,", r"\sin^x", r"\cos^2", r"@", r"#", r"$", r"%", r"&", r"*", r"" "\\", r"~", r"\frac{(2 + x}{1 - x)}", ] def test_not_parseable(): from sympy.parsing.latex import parse_latex, LaTeXParsingError for latex_str in BAD_STRINGS: with raises(LaTeXParsingError): parse_latex(latex_str) # At time of migration from latex2sympy, should fail but doesn't FAILING_BAD_STRINGS = [ r"\cos 1 \cos", r"f(,", r"f()", r"a \div \div b", r"a \cdot \cdot b", r"a // b", r"a +", r"1.1.1", r"1 +", r"a / b /", ] @XFAIL def test_failing_not_parseable(): from sympy.parsing.latex import parse_latex, LaTeXParsingError for latex_str in FAILING_BAD_STRINGS: with raises(LaTeXParsingError): parse_latex(latex_str) # In strict mode, FAILING_BAD_STRINGS would fail def test_strict_mode(): from sympy.parsing.latex import parse_latex, LaTeXParsingError for latex_str in FAILING_BAD_STRINGS: with raises(LaTeXParsingError): parse_latex(latex_str, strict=True)