"""Hermitian conjugation.""" from sympy.core import Expr, Mul, sympify from sympy.functions.elementary.complexes import adjoint __all__ = [ 'Dagger' ] class Dagger(adjoint): """General Hermitian conjugate operation. Explanation =========== Take the Hermetian conjugate of an argument [1]_. For matrices this operation is equivalent to transpose and complex conjugate [2]_. Parameters ========== arg : Expr The SymPy expression that we want to take the dagger of. evaluate : bool Whether the resulting expression should be directly evaluated. Examples ======== Daggering various quantum objects: >>> from sympy.physics.quantum.dagger import Dagger >>> from sympy.physics.quantum.state import Ket, Bra >>> from sympy.physics.quantum.operator import Operator >>> Dagger(Ket('psi')) >> Dagger(Bra('phi')) |phi> >>> Dagger(Operator('A')) Dagger(A) Inner and outer products:: >>> from sympy.physics.quantum import InnerProduct, OuterProduct >>> Dagger(InnerProduct(Bra('a'), Ket('b'))) >>> Dagger(OuterProduct(Ket('a'), Bra('b'))) |b>>> A = Operator('A') >>> B = Operator('B') >>> Dagger(A*B) Dagger(B)*Dagger(A) >>> Dagger(A+B) Dagger(A) + Dagger(B) >>> Dagger(A**2) Dagger(A)**2 Dagger also seamlessly handles complex numbers and matrices:: >>> from sympy import Matrix, I >>> m = Matrix([[1,I],[2,I]]) >>> m Matrix([ [1, I], [2, I]]) >>> Dagger(m) Matrix([ [ 1, 2], [-I, -I]]) References ========== .. [1] https://en.wikipedia.org/wiki/Hermitian_adjoint .. [2] https://en.wikipedia.org/wiki/Hermitian_transpose """ def __new__(cls, arg, evaluate=True): if hasattr(arg, 'adjoint') and evaluate: return arg.adjoint() elif hasattr(arg, 'conjugate') and hasattr(arg, 'transpose') and evaluate: return arg.conjugate().transpose() return Expr.__new__(cls, sympify(arg)) def __mul__(self, other): from sympy.physics.quantum import IdentityOperator if isinstance(other, IdentityOperator): return self return Mul(self, other) adjoint.__name__ = "Dagger" adjoint._sympyrepr = lambda a, b: "Dagger(%s)" % b._print(a.args[0])