"""Utilities to deal with sympy.Matrix, numpy and scipy.sparse.""" from sympy.core.expr import Expr from sympy.core.numbers import I from sympy.core.singleton import S from sympy.matrices.matrixbase import MatrixBase from sympy.matrices import eye, zeros from sympy.external import import_module __all__ = [ 'numpy_ndarray', 'scipy_sparse_matrix', 'sympy_to_numpy', 'sympy_to_scipy_sparse', 'numpy_to_sympy', 'scipy_sparse_to_sympy', 'flatten_scalar', 'matrix_dagger', 'to_sympy', 'to_numpy', 'to_scipy_sparse', 'matrix_tensor_product', 'matrix_zeros' ] # Conditionally define the base classes for numpy and scipy.sparse arrays # for use in isinstance tests. np = import_module('numpy') if not np: class numpy_ndarray: pass else: numpy_ndarray = np.ndarray # type: ignore scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) if not scipy: class scipy_sparse_matrix: pass sparse = None else: sparse = scipy.sparse scipy_sparse_matrix = sparse.spmatrix # type: ignore def sympy_to_numpy(m, **options): """Convert a SymPy Matrix/complex number to a numpy matrix or scalar.""" if not np: raise ImportError dtype = options.get('dtype', 'complex') if isinstance(m, MatrixBase): return np.array(m.tolist(), dtype=dtype) elif isinstance(m, Expr): if m.is_Number or m.is_NumberSymbol or m == I: return complex(m) raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m) def sympy_to_scipy_sparse(m, **options): """Convert a SymPy Matrix/complex number to a numpy matrix or scalar.""" if not np or not sparse: raise ImportError dtype = options.get('dtype', 'complex') if isinstance(m, MatrixBase): return sparse.csr_matrix(np.array(m.tolist(), dtype=dtype)) elif isinstance(m, Expr): if m.is_Number or m.is_NumberSymbol or m == I: return complex(m) raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m) def scipy_sparse_to_sympy(m, **options): """Convert a scipy.sparse matrix to a SymPy matrix.""" return MatrixBase(m.todense()) def numpy_to_sympy(m, **options): """Convert a numpy matrix to a SymPy matrix.""" return MatrixBase(m) def to_sympy(m, **options): """Convert a numpy/scipy.sparse matrix to a SymPy matrix.""" if isinstance(m, MatrixBase): return m elif isinstance(m, numpy_ndarray): return numpy_to_sympy(m) elif isinstance(m, scipy_sparse_matrix): return scipy_sparse_to_sympy(m) elif isinstance(m, Expr): return m raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def to_numpy(m, **options): """Convert a sympy/scipy.sparse matrix to a numpy matrix.""" dtype = options.get('dtype', 'complex') if isinstance(m, (MatrixBase, Expr)): return sympy_to_numpy(m, dtype=dtype) elif isinstance(m, numpy_ndarray): return m elif isinstance(m, scipy_sparse_matrix): return m.todense() raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def to_scipy_sparse(m, **options): """Convert a sympy/numpy matrix to a scipy.sparse matrix.""" dtype = options.get('dtype', 'complex') if isinstance(m, (MatrixBase, Expr)): return sympy_to_scipy_sparse(m, dtype=dtype) elif isinstance(m, numpy_ndarray): if not sparse: raise ImportError return sparse.csr_matrix(m) elif isinstance(m, scipy_sparse_matrix): return m raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def flatten_scalar(e): """Flatten a 1x1 matrix to a scalar, return larger matrices unchanged.""" if isinstance(e, MatrixBase): if e.shape == (1, 1): e = e[0] if isinstance(e, (numpy_ndarray, scipy_sparse_matrix)): if e.shape == (1, 1): e = complex(e[0, 0]) return e def matrix_dagger(e): """Return the dagger of a sympy/numpy/scipy.sparse matrix.""" if isinstance(e, MatrixBase): return e.H elif isinstance(e, (numpy_ndarray, scipy_sparse_matrix)): return e.conjugate().transpose() raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % e) # TODO: Move this into sympy.matricies. def _sympy_tensor_product(*matrices): """Compute the kronecker product of a sequence of SymPy Matrices. """ from sympy.matrices.expressions.kronecker import matrix_kronecker_product return matrix_kronecker_product(*matrices) def _numpy_tensor_product(*product): """numpy version of tensor product of multiple arguments.""" if not np: raise ImportError answer = product[0] for item in product[1:]: answer = np.kron(answer, item) return answer def _scipy_sparse_tensor_product(*product): """scipy.sparse version of tensor product of multiple arguments.""" if not sparse: raise ImportError answer = product[0] for item in product[1:]: answer = sparse.kron(answer, item) # The final matrices will just be multiplied, so csr is a good final # sparse format. return sparse.csr_matrix(answer) def matrix_tensor_product(*product): """Compute the matrix tensor product of sympy/numpy/scipy.sparse matrices.""" if isinstance(product[0], MatrixBase): return _sympy_tensor_product(*product) elif isinstance(product[0], numpy_ndarray): return _numpy_tensor_product(*product) elif isinstance(product[0], scipy_sparse_matrix): return _scipy_sparse_tensor_product(*product) def _numpy_eye(n): """numpy version of complex eye.""" if not np: raise ImportError return np.array(np.eye(n, dtype='complex')) def _scipy_sparse_eye(n): """scipy.sparse version of complex eye.""" if not sparse: raise ImportError return sparse.eye(n, n, dtype='complex') def matrix_eye(n, **options): """Get the version of eye and tensor_product for a given format.""" format = options.get('format', 'sympy') if format == 'sympy': return eye(n) elif format == 'numpy': return _numpy_eye(n) elif format == 'scipy.sparse': return _scipy_sparse_eye(n) raise NotImplementedError('Invalid format: %r' % format) def _numpy_zeros(m, n, **options): """numpy version of zeros.""" dtype = options.get('dtype', 'float64') if not np: raise ImportError return np.zeros((m, n), dtype=dtype) def _scipy_sparse_zeros(m, n, **options): """scipy.sparse version of zeros.""" spmatrix = options.get('spmatrix', 'csr') dtype = options.get('dtype', 'float64') if not sparse: raise ImportError if spmatrix == 'lil': return sparse.lil_matrix((m, n), dtype=dtype) elif spmatrix == 'csr': return sparse.csr_matrix((m, n), dtype=dtype) def matrix_zeros(m, n, **options): """"Get a zeros matrix for a given format.""" format = options.get('format', 'sympy') if format == 'sympy': return zeros(m, n) elif format == 'numpy': return _numpy_zeros(m, n, **options) elif format == 'scipy.sparse': return _scipy_sparse_zeros(m, n, **options) raise NotImplementedError('Invaild format: %r' % format) def _numpy_matrix_to_zero(e): """Convert a numpy zero matrix to the zero scalar.""" if not np: raise ImportError test = np.zeros_like(e) if np.allclose(e, test): return 0.0 else: return e def _scipy_sparse_matrix_to_zero(e): """Convert a scipy.sparse zero matrix to the zero scalar.""" if not np: raise ImportError edense = e.todense() test = np.zeros_like(edense) if np.allclose(edense, test): return 0.0 else: return e def matrix_to_zero(e): """Convert a zero matrix to the scalar zero.""" if isinstance(e, MatrixBase): if zeros(*e.shape) == e: e = S.Zero elif isinstance(e, numpy_ndarray): e = _numpy_matrix_to_zero(e) elif isinstance(e, scipy_sparse_matrix): e = _scipy_sparse_matrix_to_zero(e) return e