""" Interval Arithmetic for plotting. This module does not implement interval arithmetic accurately and hence cannot be used for purposes other than plotting. If you want to use interval arithmetic, use mpmath's interval arithmetic. The module implements interval arithmetic using numpy and python floating points. The rounding up and down is not handled and hence this is not an accurate implementation of interval arithmetic. The module uses numpy for speed which cannot be achieved with mpmath. """ # Q: Why use numpy? Why not simply use mpmath's interval arithmetic? # A: mpmath's interval arithmetic simulates a floating point unit # and hence is slow, while numpy evaluations are orders of magnitude # faster. # Q: Why create a separate class for intervals? Why not use SymPy's # Interval Sets? # A: The functionalities that will be required for plotting is quite # different from what Interval Sets implement. # Q: Why is rounding up and down according to IEEE754 not handled? # A: It is not possible to do it in both numpy and python. An external # library has to used, which defeats the whole purpose i.e., speed. Also # rounding is handled for very few functions in those libraries. # Q Will my plots be affected? # A It will not affect most of the plots. The interval arithmetic # module based suffers the same problems as that of floating point # arithmetic. from sympy.core.numbers import int_valued from sympy.core.logic import fuzzy_and from sympy.simplify.simplify import nsimplify from .interval_membership import intervalMembership class interval: """ Represents an interval containing floating points as start and end of the interval The is_valid variable tracks whether the interval obtained as the result of the function is in the domain and is continuous. - True: Represents the interval result of a function is continuous and in the domain of the function. - False: The interval argument of the function was not in the domain of the function, hence the is_valid of the result interval is False - None: The function was not continuous over the interval or the function's argument interval is partly in the domain of the function A comparison between an interval and a real number, or a comparison between two intervals may return ``intervalMembership`` of two 3-valued logic values. """ def __init__(self, *args, is_valid=True, **kwargs): self.is_valid = is_valid if len(args) == 1: if isinstance(args[0], interval): self.start, self.end = args[0].start, args[0].end else: self.start = float(args[0]) self.end = float(args[0]) elif len(args) == 2: if args[0] < args[1]: self.start = float(args[0]) self.end = float(args[1]) else: self.start = float(args[1]) self.end = float(args[0]) else: raise ValueError("interval takes a maximum of two float values " "as arguments") @property def mid(self): return (self.start + self.end) / 2.0 @property def width(self): return self.end - self.start def __repr__(self): return "interval(%f, %f)" % (self.start, self.end) def __str__(self): return "[%f, %f]" % (self.start, self.end) def __lt__(self, other): if isinstance(other, (int, float)): if self.end < other: return intervalMembership(True, self.is_valid) elif self.start > other: return intervalMembership(False, self.is_valid) else: return intervalMembership(None, self.is_valid) elif isinstance(other, interval): valid = fuzzy_and([self.is_valid, other.is_valid]) if self.end < other. start: return intervalMembership(True, valid) if self.start > other.end: return intervalMembership(False, valid) return intervalMembership(None, valid) else: return NotImplemented def __gt__(self, other): if isinstance(other, (int, float)): if self.start > other: return intervalMembership(True, self.is_valid) elif self.end < other: return intervalMembership(False, self.is_valid) else: return intervalMembership(None, self.is_valid) elif isinstance(other, interval): return other.__lt__(self) else: return NotImplemented def __eq__(self, other): if isinstance(other, (int, float)): if self.start == other and self.end == other: return intervalMembership(True, self.is_valid) if other in self: return intervalMembership(None, self.is_valid) else: return intervalMembership(False, self.is_valid) if isinstance(other, interval): valid = fuzzy_and([self.is_valid, other.is_valid]) if self.start == other.start and self.end == other.end: return intervalMembership(True, valid) elif self.__lt__(other)[0] is not None: return intervalMembership(False, valid) else: return intervalMembership(None, valid) else: return NotImplemented def __ne__(self, other): if isinstance(other, (int, float)): if self.start == other and self.end == other: return intervalMembership(False, self.is_valid) if other in self: return intervalMembership(None, self.is_valid) else: return intervalMembership(True, self.is_valid) if isinstance(other, interval): valid = fuzzy_and([self.is_valid, other.is_valid]) if self.start == other.start and self.end == other.end: return intervalMembership(False, valid) if not self.__lt__(other)[0] is None: return intervalMembership(True, valid) return intervalMembership(None, valid) else: return NotImplemented def __le__(self, other): if isinstance(other, (int, float)): if self.end <= other: return intervalMembership(True, self.is_valid) if self.start > other: return intervalMembership(False, self.is_valid) else: return intervalMembership(None, self.is_valid) if isinstance(other, interval): valid = fuzzy_and([self.is_valid, other.is_valid]) if self.end <= other.start: return intervalMembership(True, valid) if self.start > other.end: return intervalMembership(False, valid) return intervalMembership(None, valid) else: return NotImplemented def __ge__(self, other): if isinstance(other, (int, float)): if self.start >= other: return intervalMembership(True, self.is_valid) elif self.end < other: return intervalMembership(False, self.is_valid) else: return intervalMembership(None, self.is_valid) elif isinstance(other, interval): return other.__le__(self) def __add__(self, other): if isinstance(other, (int, float)): if self.is_valid: return interval(self.start + other, self.end + other) else: start = self.start + other end = self.end + other return interval(start, end, is_valid=self.is_valid) elif isinstance(other, interval): start = self.start + other.start end = self.end + other.end valid = fuzzy_and([self.is_valid, other.is_valid]) return interval(start, end, is_valid=valid) else: return NotImplemented __radd__ = __add__ def __sub__(self, other): if isinstance(other, (int, float)): start = self.start - other end = self.end - other return interval(start, end, is_valid=self.is_valid) elif isinstance(other, interval): start = self.start - other.end end = self.end - other.start valid = fuzzy_and([self.is_valid, other.is_valid]) return interval(start, end, is_valid=valid) else: return NotImplemented def __rsub__(self, other): if isinstance(other, (int, float)): start = other - self.end end = other - self.start return interval(start, end, is_valid=self.is_valid) elif isinstance(other, interval): return other.__sub__(self) else: return NotImplemented def __neg__(self): if self.is_valid: return interval(-self.end, -self.start) else: return interval(-self.end, -self.start, is_valid=self.is_valid) def __mul__(self, other): if isinstance(other, interval): if self.is_valid is False or other.is_valid is False: return interval(-float('inf'), float('inf'), is_valid=False) elif self.is_valid is None or other.is_valid is None: return interval(-float('inf'), float('inf'), is_valid=None) else: inters = [] inters.append(self.start * other.start) inters.append(self.end * other.start) inters.append(self.start * other.end) inters.append(self.end * other.end) start = min(inters) end = max(inters) return interval(start, end) elif isinstance(other, (int, float)): return interval(self.start*other, self.end*other, is_valid=self.is_valid) else: return NotImplemented __rmul__ = __mul__ def __contains__(self, other): if isinstance(other, (int, float)): return self.start <= other and self.end >= other else: return self.start <= other.start and other.end <= self.end def __rtruediv__(self, other): if isinstance(other, (int, float)): other = interval(other) return other.__truediv__(self) elif isinstance(other, interval): return other.__truediv__(self) else: return NotImplemented def __truediv__(self, other): # Both None and False are handled if not self.is_valid: # Don't divide as the value is not valid return interval(-float('inf'), float('inf'), is_valid=self.is_valid) if isinstance(other, (int, float)): if other == 0: # Divide by zero encountered. valid nowhere return interval(-float('inf'), float('inf'), is_valid=False) else: return interval(self.start / other, self.end / other) elif isinstance(other, interval): if other.is_valid is False or self.is_valid is False: return interval(-float('inf'), float('inf'), is_valid=False) elif other.is_valid is None or self.is_valid is None: return interval(-float('inf'), float('inf'), is_valid=None) else: # denominator contains both signs, i.e. being divided by zero # return the whole real line with is_valid = None if 0 in other: return interval(-float('inf'), float('inf'), is_valid=None) # denominator negative this = self if other.end < 0: this = -this other = -other # denominator positive inters = [] inters.append(this.start / other.start) inters.append(this.end / other.start) inters.append(this.start / other.end) inters.append(this.end / other.end) start = max(inters) end = min(inters) return interval(start, end) else: return NotImplemented def __pow__(self, other): # Implements only power to an integer. from .lib_interval import exp, log if not self.is_valid: return self if isinstance(other, interval): return exp(other * log(self)) elif isinstance(other, (float, int)): if other < 0: return 1 / self.__pow__(abs(other)) else: if int_valued(other): return _pow_int(self, other) else: return _pow_float(self, other) else: return NotImplemented def __rpow__(self, other): if isinstance(other, (float, int)): if not self.is_valid: #Don't do anything return self elif other < 0: if self.width > 0: return interval(-float('inf'), float('inf'), is_valid=False) else: power_rational = nsimplify(self.start) num, denom = power_rational.as_numer_denom() if denom % 2 == 0: return interval(-float('inf'), float('inf'), is_valid=False) else: start = -abs(other)**self.start end = start return interval(start, end) else: return interval(other**self.start, other**self.end) elif isinstance(other, interval): return other.__pow__(self) else: return NotImplemented def __hash__(self): return hash((self.is_valid, self.start, self.end)) def _pow_float(inter, power): """Evaluates an interval raised to a floating point.""" power_rational = nsimplify(power) num, denom = power_rational.as_numer_denom() if num % 2 == 0: start = abs(inter.start)**power end = abs(inter.end)**power if start < 0: ret = interval(0, max(start, end)) else: ret = interval(start, end) return ret elif denom % 2 == 0: if inter.end < 0: return interval(-float('inf'), float('inf'), is_valid=False) elif inter.start < 0: return interval(0, inter.end**power, is_valid=None) else: return interval(inter.start**power, inter.end**power) else: if inter.start < 0: start = -abs(inter.start)**power else: start = inter.start**power if inter.end < 0: end = -abs(inter.end)**power else: end = inter.end**power return interval(start, end, is_valid=inter.is_valid) def _pow_int(inter, power): """Evaluates an interval raised to an integer power""" power = int(power) if power & 1: return interval(inter.start**power, inter.end**power) else: if inter.start < 0 and inter.end > 0: start = 0 end = max(inter.start**power, inter.end**power) return interval(start, end) else: return interval(inter.start**power, inter.end**power)