"""Implementation of :class:`FractionField` class. """ from sympy.polys.domains.compositedomain import CompositeDomain from sympy.polys.domains.field import Field from sympy.polys.polyerrors import CoercionFailed, GeneratorsError from sympy.utilities import public @public class FractionField(Field, CompositeDomain): """A class for representing multivariate rational function fields. """ is_FractionField = is_Frac = True has_assoc_Ring = True has_assoc_Field = True def __init__(self, domain_or_field, symbols=None, order=None): from sympy.polys.fields import FracField if isinstance(domain_or_field, FracField) and symbols is None and order is None: field = domain_or_field else: field = FracField(symbols, domain_or_field, order) self.field = field self.dtype = field.dtype self.gens = field.gens self.ngens = field.ngens self.symbols = field.symbols self.domain = field.domain # TODO: remove this self.dom = self.domain def new(self, element): return self.field.field_new(element) @property def zero(self): return self.field.zero @property def one(self): return self.field.one @property def order(self): return self.field.order def __str__(self): return str(self.domain) + '(' + ','.join(map(str, self.symbols)) + ')' def __hash__(self): return hash((self.__class__.__name__, self.dtype.field, self.domain, self.symbols)) def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, FractionField) and \ (self.dtype.field, self.domain, self.symbols) ==\ (other.dtype.field, other.domain, other.symbols) def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return a.as_expr() def from_sympy(self, a): """Convert SymPy's expression to ``dtype``. """ return self.field.from_expr(a) def from_ZZ(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_QQ(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ dom = K1.domain conv = dom.convert_from if dom.is_ZZ: return K1(conv(K0.numer(a), K0)) / K1(conv(K0.denom(a), K0)) else: return K1(conv(a, K0)) def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_GaussianRationalField(K1, a, K0): """Convert a ``GaussianRational`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_GaussianIntegerRing(K1, a, K0): """Convert a ``GaussianInteger`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_RealField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_ComplexField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return K1(K1.domain.convert(a, K0)) def from_AlgebraicField(K1, a, K0): """Convert an algebraic number to ``dtype``. """ if K1.domain != K0: a = K1.domain.convert_from(a, K0) if a is not None: return K1.new(a) def from_PolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ if a.is_ground: return K1.convert_from(a.coeff(1), K0.domain) try: return K1.new(a.set_ring(K1.field.ring)) except (CoercionFailed, GeneratorsError): # XXX: We get here if K1=ZZ(x,y) and K0=QQ[x,y] # and the poly a in K0 has non-integer coefficients. # It seems that K1.new can handle this but K1.new doesn't work # when K0.domain is an algebraic field... try: return K1.new(a) except (CoercionFailed, GeneratorsError): return None def from_FractionField(K1, a, K0): """Convert a rational function to ``dtype``. """ try: return a.set_field(K1.field) except (CoercionFailed, GeneratorsError): return None def get_ring(self): """Returns a field associated with ``self``. """ return self.field.to_ring().to_domain() def is_positive(self, a): """Returns True if ``LC(a)`` is positive. """ return self.domain.is_positive(a.numer.LC) def is_negative(self, a): """Returns True if ``LC(a)`` is negative. """ return self.domain.is_negative(a.numer.LC) def is_nonpositive(self, a): """Returns True if ``LC(a)`` is non-positive. """ return self.domain.is_nonpositive(a.numer.LC) def is_nonnegative(self, a): """Returns True if ``LC(a)`` is non-negative. """ return self.domain.is_nonnegative(a.numer.LC) def numer(self, a): """Returns numerator of ``a``. """ return a.numer def denom(self, a): """Returns denominator of ``a``. """ return a.denom def factorial(self, a): """Returns factorial of ``a``. """ return self.dtype(self.domain.factorial(a))